List of publications


Complex Disordered Systems/Glasses

  • 1.  T. Nakayama
    Tunneling States in the Amorphous Thin Films at Low Temperatures: Thermal and Acoustical Properties of Amorphous Thin Films
    Phys. Rev. B 14. 4670 (1976).
  • 2.  T. Nakayama
    Surface-Phonon-Assisted Tunneling in the Two-dimensional Amorphous Systems at Low Temperatures
    Solid State Commun. 20, 7211 (1976).
  • 3.  T. Nakayama and R. L. Orbach
    On the increase of thermal conductivity in glasses above the plateau region
    Physica B 263&264, pp.261-263 (1999).
  • 4.  T. Nakayama
    Strongly localized modes as the origin of the Bose peak in glasses
    Physica B 263&264, pp.243-247 (1999).
  • 5.  M. Yamaguchi , T. Nakayama, and T. Yagi
    Effects of high pressure on the Bose peak in a-GeS2
    Physica B 263&264, pp.258-260 (1999).
  • 6.  T. Nakayama and R. Orbach
    Anharmonicity and thermal transport in network glasses
    Europhys. Lett. 47(4), pp.468-473 (1999).
  • 7.  T. Nakayama
    Microscopic buckling and low-energy dynamics in glasses
    J. Phys. Soc. Jpn. 68(11), pp.3540-3555 (1999).
  • 8.  T. Nakayama
    Boson peak and terahertz frequency dynamic in vitreous silica
    Reports on Progress in Physics 65, pp. 1195-1242 (2002).
  • 9.  T. Nakayama
    Microscopic buckling as an origin of the boson peak in network glasses
    Physica B316, pp. 497-499 (2002).
  • 10. T. Nakayama
    The role of buckled molecules for THz dynamics of network glasses
    J. Non-Cryst. Solids 307, pp. 73-79 (2002).
  • 11. W. J. Tian, T. Nakayama, J. P. Huang, and K. W. Yu
    Scaling behaviors in settling processes of fractal aggregates in water
    Europhysics Letters 78: 46001-p.1-5, 2007
  • 12. T. Nakayama and E. Kaneshita,
    Interacting Dipoles in Type-I Clathrates: Why glass-like though Crystalline?,
    Europhysics Letters, Vol.84(2008) 66001-pp.1-5.
  • 13. E. Kaneshita and T. Nakayama,
    Glass-like Thermal-transport in Symmetry-Broken Clathrates,
    Europhysics Letters, Vol. 86(2009) 56004-pp.1-6.
  • 14. T. Nakayama,
    THz Frequency Dynamics of Network/guest Atom Systems: Liquid Water, Clathrates, and Network Glasses
    Nuclear Instr.and Methods in Physics Research, A, Vol. 600(2009) No.1, pp.267-269.
  • 15. T. Nakayama and E. Kaneshita, 
    Glass-like behaviors of clathrate compounds as thermoelectric materials and their physical origin
    Reports of Toyota Physical and Chemical Research Institute, Vol.63 (2010), pp.63-69.
  • 16. T. Nakayama and E. Kaneshita
    Significance of Off-center Rattling for Emerging Low-lying THz Modes in Type-I Clathrates
    Journal of the Physical Society of Japan, Vol. 80 (2011) 104604-pp.1-7.
  • 17. T. Nakayama and E. Kaneshita
    Emergence of Glass-like THz Frequency libration Modes in Type-I Clathrates: Theory
    Journal of Physics and Chemistry of Solids (accepted for publication)

Dynamics of Fractal Structures

  • 1.  K. Yakubo and T. Nakayama
    Fractons in Percolation Clusters
    Japanese Journal of Applied Physics, vol.26, p.883 (1987).
  • 2.  K. Yakubo and T. Nakayama
    Absence of the Hump in the DOS of Percolating Clusters
    Phys. Rev. B 36, p.8933 (1987).
  • 3.  K. Yakubo and T. Nakayama
    Superlocalization of Fractons: Direct Observations by Supercomputer
    Synergetics 43 (Springer Verlag, Heidelberg), 217 (1989).
  • 4.  K. Yakubo and T. Nakayama
    Direct Observation of Localized Fractons Excited on Percolating Nets
    J. Phys. Soc. Jpn. 58, 1504 (1989).
  • 5.  K. Yakubo and T. Nakayama
    Fracton Dynamics of Percolating Networks: Energy Spectrum and Localized Nature
    Phys. Rev. B 40, 517 (1989).
  • 6.  K. Yakubo and T. Nakayama
    Perspectives on Fracton Dynamics (in Japanese)
    The Monthly Membership Journal of the Physical Society of Japan 44, 833 (1989).
  • 7.  T. Nakayama, K. Yakubo and R. Orbach
    Characteristics of Fractons: from Specific Realization to Ensemble Averages
    J. Phys. Soc. Jpn. 58, 1891 (1989).
  • 8.  T. Nakayama
    New Aspects of Fracton Dynamics from Supercomputer Simulations
    Proc. 3rd Inter. Conf. on Phonon Physics: Phonons 89 (World Scientific Publishing), p.646 (1989).
  • 9.  K. Yakubo and T. Nakayama
    Density of States of Vector Fractons for Percolating Nets
    Proc. 3rd Inter. Conf. on Phonon Physics: Phonons 89 (World Scientific Publishing), p.682 (1989).
  • 10. K. Yakubo and T. Nakayama
    Percolating Networks and Fracton Dynamics (in Japanese)
    Solid State Physics 25, 141 (1990).
  • 11. K. Yakubo, K. Takasugi and T. Nakayama
    Crossover Behavior from Vector to Scalar Fractons in the Density of State of Percolating Networks
    J. Phys. Soc. Jpn. 59, No.6, 1909 (1990).
  • 12. K. Yakubo, E. Courtens and T. Nakayama
    Missing Modes in the Density of States of Fractal Networks
    Phys. Rev. B 42, No.1, 1078 (1990).
  • 13. T. Nakayama and K. Yakubo
    Density of States of Fractons on Percolating Networks
    Proceedings of the Indian Academy of Sciences – Chemical Sciences, 102, No.5, 575 (1990).
  • 14. K. Yakubo and T. Nakayama
    Superlocalization of Fracton Wavefunctions Excited on Percolating Networks
    Proceedings of the Indian Academy of Sciences – Chemical Sciences, 102, No.5, 581 (1990).
  • 15. K. Yakubo, T. Nakayama and H. J, Maris
    Analysis of a New Method for Calculating Single Eigenmode from very Large Lattice Systems
    J. Phys. Soc. Jpn. 60, No.10, 3249 (1991).
  • 16. T. Nakayama
    Dynamics of Random Fractals: Large Scale Simulations
    Physica A 191, 386 (1992).
  • 17. T. Nakayama and K. Yakubo
    Dynamical Correlation Function of Fractal Networks: Computer Experiments
    American Institute of Physics Conf. Proc. 256, Slow Dynamics in Condensed Matter,
    edited by K. Kawasaki, M. Tokuyama, and T. Kawakatsu (American Institute of Physics,New York) p.279 (1992).
  • 18. K. Yakubo, T. Terao and N. Nakayama
    Spectral Dimension of Percolating Heisenberg Antiferromagnets
    J. Phys. Soc. Jpn. 62, No.7, pp.2200-2203 (1993).
  • 19. T. Nakayama and K. Yakubo
    Dynamic Structure Factor and Its Single-Length Scaling for Random Fractal Structures
    Phonon Scattering in Condensed Matter VII, edited by M. Meissner and R. O. Pohl (Springer-Verlag, Heidelberg, 1993) pp.213-214.
  • 20. T. Nakayama and K. Yakubo
    Dynamical Structure Factor and Single-Length Scaling for Random Fractals
    J. Phys. Soc. Jpn. vol. 61, 2601 (1992).
  • 21. T. Nakayama
    Dynamics of Fractal Structures (in Japanese)
    The Monthly Membership Journal of the Physical Society of Japan vol. 48, 528 (1993).
  • 22. T. Nakayama
    Vibrational Problems of Fractal Lattices: Large-Scale Simulations (in Japanese)
    Kagaku (Science) vol.63, No.9, 576 (1993).
  • 23. T. Nakayama
    Vibrational Problems of Fractal Networks
    Fractals, vol. 1 No.4, 806 (1993).
  • 24. T. Terao, K. Yakubo, and T. Nakayama
    Dynamical Structure Factor of Percolating Heisenberg Antiferromagnets
    Fractals, vol. 1 No.4, 917 (1993).
  • 25. K. Yakubo, T. Terao, and T. Nakayama
    Antiferromagnetic Fractons and Its Spectral Dimension
    Fractals, vol. 1 No.4, 881 (1993).
  • 26. T. Terao, K. Yakubo, and T. Nakayama
    Dynamical Structure Factor and its Scaling Property of Percolating Heisenberg Antiferromagnets
    Phys. Rev. B 49, No. 17, 12281 (1994).
  • 27. T. Nakayama
    Fracton Dimensions for Elastic and Antiferromagnetic Percolating Networks
    Soft Order in Physical Systems edited by R. Bruinsma and I. Rabin (NATO ASI Series, Plenum Press, NY, 1994) pp. 181-185.
  • 28. T. Nakayama, K. Yakubo and R. Orbach
    Dynamical Properties of Fractal Networks: Scaling, Numerical Simulations, and Physical Realizations
    Rev. Mod. Phys. 66, No.2, 381 (1994).
  • 29. K. Yakubo, T. Terao, and T. Nakayama
    Spin-wave Dynamics of Percolating Heisenberg Antiferromagnets
    J. Phys. Soc. Jpn. 63, No. 9, 3431 (1994).
  • 30. T. Terao, K. Yakubo, and T. Nakayama
    Numerical Method for Large-scale non-Hermitian Matrices and Its Application to Percolating Heisenberg Antiferromagnets
    Phys. Rev. E 50, No. 1, 566 (1994).
  • 31. T. Nakayama
    Physics of Complex Systems (in Japanese)
    Bussei- Kenkyu(Condensed Matter Physics) vol. 63, No. 1 pp. 1-48 (1994).
  • 32. T. Terao and T. Nakayama
    On the Double-peak Structure of the Dynamical Structure Factor in Diluted Heisenberg Antiferromagnets
    Phys. Rev. B 51, 11479 (1995).
  • 33. T. Nakayama
    Elastic Vibrations of Fractal Networks
    Jpn. J. Appl. Phys. 34, 2519 (1995).
  • 34. T. Terao and T. Nakayama
    Power-law Dependence on Frequency of the Raman-scattering Intensity of Percolating Networks
    Phys. Rev. B 53, R2918 (1996).
  • 35. K. Yakubo, M. Nakano, and T. Nakayama
    Fracton Decay in Nonlinear Fractal Systems
    Physica B 219 and 220, 351 (1996).
  • 36. Y. Hobiki, K. Yakubo, and T. Nakayama
    Fractal Drums and the Weyl-Berry-Lapidus conjecture
    Physica B 219 and 220, 354 (1996).
  • 37. Y. Hobiki, K. Yakubo and T. Nakayama
    Spectral Characteristics in Resonators with Fractal Boundaries
    Physical Review E 54 1997 (1996).
  • 38. T. Terao, T. Nakayama, and H. Aoki
    Multifractal Analysis of Critical Wavefunctions: Quantum Hall Systems
    Solid State Physics Vol. 32, 671(1997), in Japanese.
  • 39. T. Terao an T. Nakayama
    Observation of antiferromagnetic fractons: Analysis of inelastic neutron scattering experiments
    Phys. Rev. B 66 (13), 132409 (2002).
  • 40. T. Nakayama and T. Terao
    Antiferromagnetic fractons observed by inelastic neutron scattering experiments
    Journal of Neutron Research 12(4) 263-266(2004)
  • 41. T. Nakayama
    Fractal structures in condensed matter physics
    Encyclopedia of Complexity and Systems Science, (Springer-Verlag, 2009) pp.3787-3893.
  • 42. S. Itoh, T.Nakayama, R. Kajimoto, and M. A. Adams,
    Single-Length-Scaling Analysis for Antiferomagnetic Fractons in Dilute Heisenberg System RbMn0.4Mg0.6F3
    Journal of the Physical Society of Japan, Vol. 78 (2009) 013707-pp.1-4.
  • 43. S. Itoh, T. Nakayama, and M. A. Mark
    Antiferomagnetic Fractons in Dilute Heisenberg System RbMn0.4Mg0.6F3 and RbMn0.4Mg0.6F3
    Journal of the Physical Society of Japan, Vol. 80 (2011) 104704-pp.1-7.
  • 44. S. Itoh, T. Nakayama, and M. A. Mark
    Antiferomagnetic Fractons in Percolating Magnets
    Neutron Science ( in Japanese), (accepted for publication)

Localization Problems/High-Tc Superconductors

  • 1.  T. Ishibashi and T. Nakayama
    Effects of Oxygen stoichiometry for Anisotropic Structural Change in Oriented YBa2Cu3Ox
    Jpn. J. Appl. Phys. 27, L1467 (1988).
  • 2.  S. Tanda and T. Nakayama
    Bose-glass Phase in High-Tc Nd-Ce-Cu-O Thin Films (in Japanese)
    Solid State Physics 27, 348 (1992).
  • 3.  S. Tanda, S. Ohzeki and T. Nakayama
    Bose-glass-Vortex-glass Phase Transition and Dynamic Scaling for High-Tc Nd2−xCexCuO4 Thin Films
    Phys. Rev. Lett. 69, 530 (1992).
  • 4.  M. Honma, S. Tanda and T. Nakayama
    Electron Tunneling into Epitaxial Films of Nd2−xCexCuO4
    Appl. Phys. Lett. 61, 1724 (1992).
  • 5.  T. Terao, K. Yakubo and T. Nakayama
    Localization Exponents of Waves in Percolation Systems
    J. Phys. Soc. Jpn. 61, 2173 (1992).
  • 6.  M. Takano, K. Yakubo and T. Nakayama
    Numerical Achievement of Strong Localization of Light in Optical Waveguides with Aperiodic Grating
    Jpn. J. Appl. Phys. 31, L839 (1992).
  • 7.  S. Tanda M. Honma and T. Nakayama
    Critical Sheet Resistance Observed in High-Tc Oxide-Superconductor Nd2−xCexCuO4 Thin Films
    Phys. Rev. B 43, No.10, 8725 (1991).
  • 8.  S. Tanda, S. Ozeki, M. Honma, A. Ohi and T. Nakayama
    Superconductor-Insulator Transition in Nd2−xCexCuO4 Single Crystal Thin Films
    Physica C 185, 1323 (1991).
  • 9.  S. Tanda, S. Ohzeki and T. Nakayama
    Longitudinal Negative Magnetoresistance in Nd2−xCexCuO4: Evidence for Kondo- like Behavior
    Physica B 194-196, 1967 (1994).
  • 10. S. Tanda, K. Takahashi and T. Nakayama
    Scaling of the Conductivity of Nd2CuO4−x−δFx Single Crystals: Experimental Evidence for 2D Fermi Liquid Behavior
    Physica B 194-196, 1961 (1994).
  • 11. T. Nakayama, K. Yakubo and M. Takano
    Strong Localization of Photons in Aperiodic Optical Waveguides
    Phys. Rev. B 47, No.15, 9249 (1993).
  • 12. S. Tanda, K. Takahashi, and T. Nakayama
    Scaling Behavior of the Conductivity of Nd2CuO4−x−δFx Single Crystals: Evidence for Orthogonal Symmetry
    Phys. Rev. B 49, No. 13, 9260 (1994).
  • 13. K. Inagaki, S. Tanda, and T. Nakayama
    Nonlinear Conductivity of Bi2Sr2CuO6 Single Crystals
    Physica C 235-240, 1361 (1994).
  • 14. T. Maeno, K. Kagawa, S. Tanda, and T. Nakayama
    Macroscopic Quantum Tunneling in YBa2Cu3O7−δ Thin Films
    Physica C 235-240, 3321 (1994).
  • 15. T. Terao, T. Nakayama, and H. Aoki
    Multifractality of the Quantum Hall Wave Functions in Higher Landau Levels
    Physical Review B 54, 10350 (1996).
  • 16. S. Tanda and T. Nakayama
    Variable Range Hopping Transport near the Superconductor-Insulator Transition observed in Nd2−xCexCuO4 Thin Films
    Phil. Mag. Lett. 72, 223 (1995).
  • 17. H. Shima and T. Nakayama
    Finite-Time Scaling for the 3d Anderson Transition
    J. Phys. Soc. Jpn. 67, 2189 (1998).
  • 18. S. Tanda, K. Kagawa, T. Maeno, T. Nakayama, K. Yamaya, A. Ohi, and N. Hatakenaka
    Possibility of macroscopic resonant tunneling near the superconductor-insulator transition in YBa2Cu3O7 thin films
    Europhysics Letters. 41, 425 (1998).
  • 19. H. Shima and T. Nakayama
    Critical behavior of ac conductivity near the Anderson transition
    Phys. Rev. B 60(20), pp.14066-14071 (1999).
  • 20. H. Shima and T. Nakayama
    Anderson transition in 3D systems
    Progress of Therotical Physics Supplement 138, pp.515-516 (2000).
  • 21. H. Shima,K. Yakubo, and T. Nakayama
    Dynamic conductivity in a 2D random magnetic field
    Physica B 298(1-4), pp.74-78 (2001).
  • 22. H. Shima, K. Yakubo, and T. Nakayama
    Quantum transport in a long-range random magnetic fields
    Computer Physcis Communications 142(1-3), pp. 424-428 (2001).
  • 23. H. Shima, K. Yakubo, and T. Nakayama
    Quantum-interference effect on AC transport of electrons subject to long-range random magnetic fields
    J. Phys. Soc. Jpn 70(9), pp.2682-2688 (2001).
  • 24. H. Shima and T. Nakayama
    Localization-delocalization transition in one-dimensional electron systems with long-range correlated disorder
    Phys. Rev. B70(7):07516-1-5(2004)
  • 25. H. Shima and T. Nakayama
    Breakdown of Anderson localization in disordered quantum chains
    Microelectronics Journal 36 (3-6): 422-424, 2005
  • 26. H. Shima and T. Nakayama
    Correlation effects of quantum rotors in Ge crystals
    Physica B-Condensed Matter 36: 157-160, 1 2006
  • 27. H. Shima and T. Nakayama
    Metal-insulator transition in 1D correlated disorder
    Topology in Ordered Phase (World Scientific, Singapore) 271-276, 2006
  • 28. S. Nishino, H. Shima, and T. Nakayama,
    Peculiar behaviors of excited modes in harmonic chains with correlated disorder,
    Journal of Physics, Vol.92 (2007)pp.012156-012160.

Computational Physics/Numerical Simulations

  • 1.  T. Sakuma, T. Nakayama and F. Yoshida
    Computer-Simulated Scattering of Envelope Soliton from Impurity and Interface in a One-dimensional Nonlinear Lattice
    Proc. 2nd Internl. Conf. on Phonon Scattering in Solids (Plenum, New York) p.51(1976).
  • 2.  F. Yoshida, T. Nakayama and T. Sakuma
    Computer-Simulated Scattering of Lattice Solitons from Impurity at Free Boundary,
    J. Phys. Soc. Jpn. 40, 901 (1976).
  • 3.  F. Yoshida, Y. Okwamoto and T. Nakayama
    Thermodynamic Properties of Anisotropic Two-dimensional Sine-Gordon Lattice: Size Effect on Phonon Conduction
    J. Phys. Soc. Jpn. 50, 1039 (1981).
  • 4.  F. Yoshida, Y. Okwamoto and T. Nakayama
    Molecular-dynamics Calculations of Two-dimensional Sine-Gordon Lattice
    J. Phys. Soc. Jpn. 51, 1329 (1982).
  • 5.  H. Kato, Y. Okwamoto and T. Nakayama
    Two-dimensional Sine-Gordon Lattice with Fixed Winding Number: A Molecular Dynamics Study
    J. Phys. Soc. Jpn. 52, 3334 (1983).
  • 6.  T. Nakayama, M. Takano, K. Yakubo and T. Yamanaka
    Numerical Method for the Analysis of Optical Waveguides
    Optics Lett. 17, No.5, 326 (1992).
  • 7.  H. Noro and T. Nakayama
    Mode Analysis of Optical Waveguides: A New Approach
    Optics Lett. 20, 1227 (1995).
  • 8.  Y. Hobiki, K. Yakubo, and T. Nakayama
    Spectral Distribution of Drums with Fractal Perimeters: The Weyl-Berry-Lapidus Conjecture
    Phys. Rev. E 52, R1310 (1995).
  • 9.  T. Nakayama
    Computing Very Large Large Matrices: The Forced Oscillator Method
    Computational Physics as a New Frontier in Condensed Matter Research, edited by H. Takayama et al. (The Phys. Soc. Jpn., Tokyo, 1995) pp. 21-33.
  • 10. T. Terao and T. Nakayama
    An Efficient Method for Computing Response Functions for Large-Scale Vibrational Systems
    Physica B 219 and 220, 357 (1996).
  • 11. H. Noro, K. Fukushi, and T. Nakayama
    Molecular Dynamics Approach to the Mode Analysis of Optical Waveguides
    Japanese J. Appl. Phys. 35, 3226 (1996).
  • 12. H. Noro and T. Nakayama
    A New Approach to Scalar and Semivector Mode Analysis of Optical Waveguides
    J. Lightwave Technology 14, 1546 (1996).
  • 13. H. Noro and T. Nakayama
    Unusual Molecular-Dynamical Method for Vector-Wave Analysis of Optical Waveguides
    J. Opt. Soc. Am. (A) 14,1451(1997).
  • 14. H. Noro and T. Nakayama
    New Algorithm for the Mode Analysis of Optical Waveguides
    The Member Journal of the Japan Society of Applied Physics, Vol. 67, 444 (1998).
  • 15. T. Nakayama and H. Shima
    Computing the Kubo Formula for Large Systems
    Phys. Rev. E 58, 3984 (1998).
  • 16. T. Nakayama and H. Shima
    The forced oscillator method: Its applications to physical systems
    RIKEN Review, 29(6), pp.16-19 (2000)
  • 17. T. Nakayama
    The forced oscillator method and the Kubo formula
    Progress of Theoretical Physics, Supplement 138, pp.60-65 (2000).
  • 18. T. Nakayama and K. Yakubo
    The forced oscillator method: Eigenvalue analysis and computing linear response function
    Physics Reports 349, pp.239-299 (2001).
  • 19. H. Shima, H. Obuse, K. Yakubo, and T. Nakayama
    The forced oscillator method incorporating the fast time-evolution algorithm
    Computer Physics Communications 142(1-3), pp. 418-423 (2001).
  • 20. H. Shima and T. Nakayama
    Acceleration of the forced oscillator method and its application to a model for glasses
    Physica B316, pp. 521-523 (2002).

Low Temperature Physics

  • 1.  T. Nakayama
    New Mechanism for the Kapitza Resistance
    Proc. 6th Internl. Conf. on Internal Friction and Ultrasonic Attenuation in Solids.
    (University of Tokyo Press) p.381 (1977).
  • 2.  T. Nakayama
    Tunneling as a Mechanism for the Kapitza Resistance
    Scientific Bulletin 2, 19 (1977).
  • 3.  T. Nakayama
    The Kapitza Thermal Resistance and Tunneling States of Helium Atoms
    J. Phys. C 17, 3273 (1977).
  • 4.  T. Nakayama
    Tunneling as a Mechanism for the Anomalous Kapitza Resistance
    J. de Physique 39, C6-256 (1978).
  • 5.  T. Nakayama
    Perspectives on Kapitza Resistance (in Japanese)
    The Monthly Membership Journal of the Physical Society of Japan 33, 408 (1978).
  • 6.  T. Nakayama
    Kapitza Thermal Resistance (in Japanese)
    Solid State Physics 15, 329 (1980).
  • 7.  T. Nakayama and F. W. Sheard
    Absorption of Surface Phonons by Adsorbed Helium System on an Inhomogeneous Surface
    Proc. 3rd Internl. Conf. on Phonon Scattering in Condensed Matter (Plenum, New York) p.239 (1980).
  • 8.  T. Nakayama and N. Nishiguchi
    Theory of Thermal Boundary Resistance between Small Particles and Liquid Helium: Size Effect on Phonon Conduction
    Phys. Rev. B 24, 6421 (1981).
  • 9.  N. Nishiguchi and T. Nakayama
    Theory of Thermal Boundary Resistance between Small Particles and Liquid Helium II: Normal Liquid 3He
    Phys. Rev. B 25, 5278 (1982).
  • 10. N. Nishiguchi and T. Nakayama
    Thermal Resistance between Sintered Power-Liquid He3 Boundary
    Solid State Commun. 45, 877 (1983).
  • 11. T. Nakayama
    Thermal Boundary Resistance between Small Particles and Liquid 3He
    Proc. 4th Internl. Conf. on Phonon Scattering in Condensed Matter, (Springer, Berlin) p.155 (1984).
  • 12. T. Nakayama
    Magnetic Kapitza Resistance and Surface Random Spins
    Phys. Rev. B 29, 1436 (1984).
  • 13. S. Saito, T. Nakayama and H. Ebisawa
    Search for Magnetic Coupling between Adsorbed 3He and Small Copper Particles
    Phys. Rev. B 31, 7475 (1985).
  • 14. T. Nakayama
    Diffuse Scattering of High-Frequency Phonons at Solid Surfaces
    Phys. Rev. B 32, 777 (1985).
  • 15. T. Nakayama
    New Channels of Energy Transfer across a Solid-Liquid He Interface
    J. Phys. C 18, L667 (1985).
  • 16. T. Nakayama
    Anomalous Kapitza Resistance at Millikelvin Temperatures (in Japanese)
    The Monthly Membership Journal of the Physical Society of Japan 40, 956 (1985).
  • 17. T. Nakayama
    Magnetic Versus Nonmagnetic Mechanism for Thermal Boundary Conductance at Millikelvin Temperatures
    J. Phys. Soc. Jpn. 55, 1054 (1986).
  • 18. T. Nakayama
    Scattering of High-Energy Phonons at Irregular Surfaces without and with Liquid Helium
    Phys. Rev. B 33, 8664 (1986).
  • 19. T. Nakayama and K. Yakubo
    Damping of Phonons by Metal Particles Embedded in an Insulating Matrix
    Solid State Science 68 (Springer-Verlag, Heidelberg), 94 (1986).
  • 20. T. Nakayama and K. Yakubo
    Interaction between Phonons and 3He-quasiparticles in the 3He-4He Mixture Confined in Porous Media
    Solid State Science 68 (Springer-Verlag, Heidelberg), 237 (1986).
  • 21. T. Nakayama and K. Yakubo
    Kapitza Resistance between Sintered Particles and He3-He4 Mixture
    Jpn. J. Appl. Phys. 26, 375 (1987).
  • 22. T. Nakayama
    Magnetic Channel of the Kapitza Resistance for a Dilute 3He-4He Solution at Temperatures below 1mK
    Phys. Rev. B 37, 5958 (1988).
  • 23. T. Nakayama
    Kapitza Thermal Boundary Resistance and Interactions of Quasiparticles with Surfaces
    Progress in Low Temperature Physics XII (North-Holland Publishing, Amsterdam) p.115-191 (1989).
  • 24. A. Ohi and T. Nakayama
    Spin-Polarization Enhancement of Dilute 3He-4He Solutions through Porous Media
    Phys. Rev. B1, 41, No.10, 7281 (1990).
  • 25. A. Ohi and T. Nakayama
    Diffusion of 3He Quasiparticles in Dilute 3He-4He Solution Confined in Porous Media
    Phys. Rev. B1, 41, No.10, 7322 (1990).
  • 26. A. Ohi and T. Nakayama
    Percolative Diffusion of Dissolved 3He Atoms in He II through Porous Media
    J. Low Temp. Phys. 81, No.5/6, 349 (1991).
  • 27. H. Shima Hand T. Nakayama
    Dielectric anomaly in coupled rotor systems
    Phys. Rev. B 69 (3), 035202 (2004).
  • 28. H. Shima and T. Nakayama
    Orienting coupled quantum rotors by ultrashort laser pulses
    Phys. Rev. A 70 (1), 013401 (2004).
  • 29. H. Shima and T. Nakayama
    Low-temperature anomalies of crystalline Ge with O-impurities
    Journal of Physical Society of Japan 73(9)2464-2468(2004)
  • 30. H. Shima and T. Nakayama
    Glass-like behavior of crystalline Ge with O-impurities at low temperatures
    Phys. Sta. Sol. (c) 1(11) 2884-2887(2004)
  • 31. H. Shima and T. Nakayama
    Dielectric response of interacting oxygen defects in germanium
    Phy. Stat. Sol. (c)1(11) 2933-2936(2004)
  • 32. H. Shima and T. Nakayama
    Interacting quantum rotors in oxygen-doped germanium
    Physical Review B 71 (15): 155210, 2005
  • H. Shima and T. Nakayama
    Enhanced orientation of interacting polar molecules
    Microelectronics Journal 36 (3-6): 586-588, 2005

Soft Matters

  • 1.  T. Terao and T. Nakayama
    Vibrational Dynamics of Cluster-Cluster Aggregations
    Phys. Rev. B 57, 4426 (1998).
  • 2.  T. Terao and T. Nakayama
    Sol-gel transition of reversible cluster-cluster aggregations
    Phys. Rev. E 58, 3494 (1998).
  • 3.  T. Terao and T. Nakayama
    Vibrational characteristics of cluster-cluster aggregations
    Physica B 263&264, pp.317-320 (1999).
  • 4.  T. Terao and T. Nakayama
    Crystallization in quasi-two-dimensional colloidal systems at an air-water interface
    Phys. Rev. E 60(6), pp. 7157-7162 (1999).
  • 5.  T. Terao and T. Nakayama
    Light scattering intensity on reversible cluster-cluster aggregations
    J. Phys.: Condens. Matter 11, pp. 7071-7078 (1999).
  • 6.  T. Terao and T. Nakayama
    Localization nature of vibrational excitations on cluster-cluster aggregation
    Fractals 7(3), pp. 249-255 (1999).
  • 7.  T. Terao and T.Nakayama
    Bond-orientational order of 2D colloidal crystal
    Progress of Theoretical Physics Supplement 138, pp.386-387 (2000).
  • 8.  T. Terao and T. Nakayama
    Reversible cluster-cluster aggregation and colloidal gels
    Progress of Theoretical Physics Supplement 138, pp.354-359 (2000).
  • 9.  T. Terao and T. Nakayama
    Effective interaction between highly charged colloidal particles under geometrical confinement
    J. Phys.: Condens. Matter, 12, pp. 516-5177 (2000).
  • 10. T. Terao and T. Nakayama
    Melting transition of two-dimensional colloidal crystal
    Statistical Physics, edited by M. Tokuyama and H. E. Stanley ( American Institute of Physics, NY)pp. 235-237 (2000).
  • 11. T. Terao and T. Teraoka, and T. Nakayama
    Characteristics of aerosol formation in the free-molecular regime
    Fractals, Vol.8, No.3, pp.285-291 (2000).
  • 12. T. Terao and T. Nakayama
    Monte Carlo study of attractive interaction between charged colloids
    Studies in Surface Science and Catalysis 132, edited by Y. Iwasawa et al. (Elsevier Science B. V., Amsterdam), pp.379-382 (2001).
  • 13. T. Terao and T. Nakayama
    Interparticle force between like-charged colloidal systems: A numerical study
    Colloids and Surfaces 182, pp.299-304 (2001).
  • 14. T. Terao and T. Nakayama
    Charge inversion of colloidal particles in an aqueous solution: Screening by multivalent ions
    Phys. Rev. E 63, pp. 41401-1-6 (2001).
  • 15. T. Terao and T. Nakayama
    Adsorption of colloidal particles on a charged surface: Cluster Monte  Carlo simulations
    Phys. Rev. E 65(2), pp. 21405-1-21405-5 (2002).
  • 16. T. Terao and T. Nakayama
    Interparticle force between like-charged colloidal systems: A numerical study
    Colloids and Surfaces 182, pp.299-304 (2001).
  • 17. T. Terao, T. Ikeda, and T. Nakayama
    Crossover phenomena in flocculation of colloidal suspensions: the effect of shear flow
    Physica A 320, pp.77-83 (2003).
  • 18. T. Terao and T. Nakayama
    Molecular dynamics study of dendrimers: Structure and effective interaction
    Macromolecules 37 (12), pp.4686-4694 (2004).

Phonon Physics

  • 1.  T. Nakayama, Y. Ikeda and A. Odajima
    A Valence Force Treatment of the Lattice Dynamics of Tellurium
    J. Phys. Soc. Jpn. 30, p.805 (1971).
  • 2.  T. Sakuma and T. Nakayama
    A Comment on Phonon-Mass Defect Scattering
    Lett. Nuovo Cimento 2, p.701 (1971).
  • 3.  T. Nakayama and T. Sakuma
    Resonance in Surfon-Mass Defect Scattering
    Lett. Nuovo Cimento 2, p.1104 (1971).
  • 4.  T. Nakayama and A. Odajima
    A Modified Valence Force Field Approach to Lattice Dynamics of Trigonal Selenium
    J. Phys. Soc. Jpn. 33, p.12 (1972).
  • 5.  T. Nakayama and A. Odajima
    Applicability of a Valence Force Field Model to the Lattice Vibrations of Trigonal Selenium
    J. Phys. Soc. Jpn. 34, p.732 (1973).
  • 6.  T. Sakuma and T. Nakayama
    Attenuation of Elastic Surface Waves by Anharmonic Interactions at Low Temperatures
    Appl. Phys. Lett. 25, p.176 (1974).
  • 7.  T. Sakuma and T. Nakayama
    Attenuation of Elastic Surface Waves by Anharmonic Interactions
    Jpn. J. Appl. Phys. Suppl. 2 Pt.2, p.893 (1974).
  • 8.  T. Nakayama and T. Sakuma
    Damping of Elastic Surface Waves by Density Fluctuation on Solid Surfaces
    J. Appl. Phys. 46, p.2445 (1975).
  • 9.  T. Nakayama and T. Sakuma
    Surface Phonon Scattering by Density Fluctuation on Solid Surface
    Proc. 2nd Inter. Conf. on Phonon Scattering in Solids (Plenum, New York) p.49 (1976).
  • 10. T. Nakayama and T. Sakuma
    Damping of Elastic Surface Waves by Density Fluctuation on Solid Surfaces II
    J. Appl. Phys. 4, p.2263 (1976).
  • 11. T. Nakayama, M. Narita and T. Sakuma
    Elastic Surface Wave Attenuation by Surface Inhomogeneities
    Proc. 6th Internl. Conf. on Internal Friction and Ultrasonic Attenuation in Solids.
    (University of Tokyo Press) , p.353 (1977).
  • 12. M. Narita, T. Sakuma and T. Nakayama
    The Attenuation of Elastic Waves by Surface Inhomogeneities: Rayleigh Waves
    J. Appl. Phys. 49, p.5507 (1978).
  • 13. T. Nakayama and T. Ogawa
    A Variational Approach to Dynamics of Simple Ionic Crystals at High Temperatures
    Zeitschrift fuer Physik B 36, 13 (1979).
  • 14. T. Sakuma, T. Nakayama, and S. Tamura
    Surface Mode Phonons,
    The Membership Journal of the Applied Physics Society of Japan 49, p.852 (1980).
  • 15. T. Nakayama and S. Tamura
    Acoustic Imaging at Ultra-High Frequencies, edited by Y. Wada, p.187-192 (1987).
  • 16. T. Nakayama
    High-Frequency Phonons, Acoustic Wave Devices 1991, p.405.