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1. Introduction
Degree-degree correlations in real-world networks

Scale-Free Nature of degree distribution

Degree ﬂ
ki = 3 o 1

:} High degree nodes (Hubs) exist and play important roles. b

IZ:) Degree-degree correlations
(complexity peculiar to networks) NI

P(k) < k=Y

Previous research tends to focus on adjacent nodes

Nearest neighbor degree correlation (NNDC)

I k’ / Assortativity [M.E.J. Newman (2002)]
§ k k< A kk PG - [, o (k + KYP(k, k)]
2, (k2 + k)P, k') = [8y ok + kNP, k)]

Assortative mixing

Disassortative mixing
Biological or
Technological networks

Average degree of nearest neighbor nodes

Social networks ke (k) = Z K'P(K'[k)

~ More generally,

P..(k, k") :Probability that one end node of a randomly chosen edge has the degree k and the other
end node has the degree k'

9 P..(k'|k) :Probability that a node adjacent to a randomly chosen node of degree k has the degree k'’
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Impact of nearest neighbor degree correlations (NNDCs)

» Resilience for random or targeted attack [M. A. Serrano (2006), A. V. Goltsev (2008)]
» Diffusion of information or disease [A.-L. Barabasi (2016), C. E. Gross (2006)]

» Synchronization of oscillator [C. E. La Rocca (2011), V. Avalos-Gaytan (2012)]
» Game theory [Z. Rong (2007)]

However
NNDC is not enough to characterize degree-degree correlations.

Degree correlations between nodes
separated by more than one step
(i.e., beyond nearest neighbors)

Shortest path length [;; = 4

E>Long-Range Degree Correlation (LRDC)
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NNDC is not enough to explain global properties

» Long-range hub repulsion in fractal networks [Y. Fujiki (2017)]
» Reconstruction of networks by NNDC [C. Orsini (2015)]

Path lengths between hubs affects on dynamics [}
» Jamming threshold in communication networks [B. Tadi¢ (2004)]
» Epidemic threshold of the SIS model [M. Boguna (2013)] AV

Previous proposals for formulating LRDCs
» Long-range assortativity [IV. Mayo (2015), A. Arcagni (2017)]

Specific aspects

of LRDCs

» Fluctuations of the degree along shortest paths [D. Rybski (2010)] 3.

» Two-walks degree assortativity [A. Allen-Perkins (2017)]
General argument
of LRDCs

2. Objective

To provide a general description of long-range
degree correlations in complex networks

3. Description of LRDC

Five probability distributions characterizing LRDC

. ; la 2 /
NNDC described by 1 % .......... k
Pan(k, k"), Pan (k' k) k k’ <:> %%\ [—1 [

Two endpoints of
an edge

Two endpoints of

an [-length shortest path
Joint distribution

P(k k' l)5 Probability that one node of a randomly chosen node pair has the degree k, the other
S node has the degree k’, and the path length between two nodes is [

Conditional distributions

P(k k'|l) - Probability that one node of a randomly chosen node
' pair separated by [ from each other has the degree k
and the other node has the degree k'

Bayes' theorem
P(AnB) =P(A|B)P(B)

P(k',1|k): Probability that a randomly chosen node has the R(D) R(DHQ (k|
’ degree k' and is separated by [ from a node of degree k
& 5P y . P(k, k'|]) P(k'|k, 1)
P(k'|k,1): Probability that a node separated by [ from a randomly P(k, k', D

chosen node of degree k has the degree k'

P(k', l|k) P(l|k, k"
P(l|k,k": Probability that the path length between randomly F/ \q
\ ' chosen two nodes of degrees k and k' is [ P(k) P(k)P(k")

Y P(k): Degree distribution
: . el e .. R(1): Shortest path length distributi
If one of the five probability distributions is given, (1): Shortest path length distribution
we can calculate other distributions.
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4. Long-range uncorrelated networks (LRUN)
Judgement of existence of LRDCs € uncorrelated networks
Nearest neighbor uncorrelated networks
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Q(k[l) = Xy P(k, k'|D)
Probability that one node of a

randomly chosen node pair
separated by [ has the degree k
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Pan(k, k") = Q(K)Q(K") ( o

Long-range uncorrelated network (LRUN)

o , SN0
P(k, 1) = QUIDQUEID forvL | - ey e

4.1. Infinite tree-like networks
satisfy the condition of LRUN

4.2. Can finite networks satisfy that?
It is not easy to answer this question rigorously...

random networks
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Pk, k', 1) = . = - :
(k, k', 1) =0 Y candidate for LRUNs (configuration model)
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PIIKD = POl - DRyl =700

; E of
- P(k,k'|])
Confirmation of P(k, k'|l) = Q(k|l)Q(k'|l) for Erd&s-Rényi random graphs ./: Q(kll)Q(kll\l)
N = 1,000
{ P(k, k') # Q(k|DQ(K'|D forl > (l) (finite-size effect) (k) = 5.0
P(k,k'|D) = Q(k|DOQ(K'|D) forl «< ()  (local tree-like) _ =447

From a practical viewpoint

Random networks (P;)
Baseline for comparison |:>

with the same degree sequence

Calculation of P, using the mean-field and local-tree approximations

[S. Melnik and J. P. Gleeson, arXiv:1604.05521 (2016)]

Recursion formula: el 1
_ kK’ kk' ' ’ k'(1—q -
Polllle, k) = pr™ = picy 1-g, = Gy(1 - gy - )

N(k)

p{‘k’:ProbabiIity that the distance between randomly chosen  Initial state:

/ 5 / / k,
two nodes of degrees k and k' is equal to or less than [ p&k = —N;gk) ) Q5 = N (k)

C_I{( : Probability that an adjacent node of a randomly chosen

node i lies within [ from a k'-degree node j under the kk! - k' K
condition that i is separated more than [ from j L=p/™ =[1-po" |[1—gi-4]

5. Applying to real-world networks

Measure to characterize LRDCs
Extensions of measures for NNDC

Real-World Networks

Gnutella peer-to-peer network

N =10,876 (k) =7.4
Ph(k,k')=P(kKk'|l =1) P.(k'|k) =P('|k, | =1) E = 39994 () = 4.6
» Long-range assortativity: [M. Mayo (2015)] , Coauwir;??;;aw?g _g1
o AT kPO KD - [ ser (ke + kP (kKD 2 E=93439 (I} =54
2% (k2 + kPP (e, K1) = [Z (ke + KDP (e k(D]
» Average degree of

[-th neighbor nodes: Other possible indices ....

> Rescaled average _ 2Pk, k)

(k) = S kP (K [k, 1)

L(k, k")) res =
shortest-path length: (L, k)

X Pk, K

ki (k)

(L, k) )res
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Conclusions

We provided a general framework for analyzing LRDCs.

» To fully describe LRDCs, we introduced fundamental five distributions
P(k,k',)),P(k, k'), P(l|k, k"), P(k'|k,1),and P(k',[|k). If one of
them is given, we can calculate others using Bayes’ theorem.

» We adopted random networks as a baseline to judge the existence of
LRDCs, instead of LRUNSs defined by P(k, k'|l) = Q(k|D)OQ(k'|l), and
analytically calculated the probability distributions (P ) for random
networks within the mean-field approximation.

» The utility of our argument was demonstrated by applying it to real-
world networks.

One can introduce new measures in our framework.
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