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Abstract

A review is given of the forced oscillator method (FOM), an algorithm particularly suitable to treat
physical systems described by very large matrices. This scheme enables us to compute spectral densities,
eigenvalues and their eigenvectors of both Hermitian and non-Hermitian matrices with high speed and
accuracy, in particular when combined with the fast time-evolution method based on the Chebyshev
polynomial expansion. In addition, linear response functions can be computed with high speed and accuracy
in the context of the FOM. The emphasis will be on the presentation of the efficiency of the FOM for a broad
range of applications with their computer source codes for the purpose of wide utility. © 2001 Elsevier
Science B.V. All rights reserved.

PACS: 02.70. —c; 02.60.Dc; 63.50. + x; 31.15.Qg; 75.40.Mg

Keywords: Forced oscillator method; Large-scale matrices; Eigenvalue analysis; Linear response function
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1. Introduction

In numerical analyses, the eigenvalue analysis of large matrices is often the most fundamental
part. As sizes of Hamiltonian matrices become large, calculations by conventional methods become
difficult since computing times as well as required memory space grows rapidly. So far, many
algorithms suitable to treat very large matrices have been developed. Among these, numerical
routines tridiagonalizing large matrices are widely employed, such as Lanczos or Householders
method [1-5]. Once a given matrix has been reduced to tridiagonal form, it is easy to determine its
eigenvalues by using the bisection scheme and the inverse iteration routine [6].

The forced oscillator method (FOM) [7,8] has offered a quite different scheme for computing
spectral densities, eigenvalues and their eigenvectors of large-scale matrices, in addition to comput-
ing linear response functions such as the Kubo formula for AC conductivities [9]. The FOM is
quite unique among algorithms for eigenvalue analysis, showing high performance when applied to
very large matrices. The FOM utilizes a principle of Hamilton mechanics: a linear lattice dynamical
system driven by a periodic external force of frequency Q will respond with large amplitudes in
those eigenmodes close to this frequency [7]. Namely, the eigenvalue analysis is reduced to the
solution for the time development of the equations of motion. Particular advantages of the FOM
lie in its simplicity, speed, and memory efficiency. Source codes for FOM-based programs can be
easily vectorized for implementation on an array- or parallel-processing modern supercomputer.
The FOM can treat numerically large-scale matrices of size ~ 107 x 10" or more by using
computers with 1 Gbyte memory space within a reasonable computing time.

The FOM was originally presented by Williams and Maris [7] in 1985, 15 years ago, for the
purpose of calculating eigenfrequencies and their eigenmodes of a lattice dynamical problem
described by real symmetric matrices [ 10]. It is straightforward to extend the FOM for analyses of
both Hermitian and non-Hermitian matrices with complex elements [11]. Thus, we can deal with
eigenvalue problems not only of lattice dynamics, but also for general types of matrices by mapping
them onto those of lattice-dynamical equations of motion.

The most time-consuming part in the FOM is to solve lattice-dynamical equations of motion, for
which the modified Euler method [12,13] (see Section 3.1) had been adopted [7]. This article
demonstrates that the global propagator method or the fast time-evolution method, which we call
the FEM hereafter, remarkably enhances the efficiency of the FOM. The time evolution of
large-scale dynamical systems is calculated on the basis of the Chebyshev polynomial expansion
of the formal operator solution of the Schrodinger equation [14-18] or the general type of
Sturm-Liouville differential equations [19]. The FEM enables us to calculate or simulate the state
of a dynamical system at arbitrary time ¢t with extraordinarily high speed and accuracy. Though
the FEM is not appropriate to pursue the state at each time step At, this disadvantage turns the
advantage for the use of the FOM not requiring the intermediate time-developed state. The
computing time of the FOM incorporating the FEM is greatly reduced (by about 10 times)
compared to the case using the modified Euler method.

In this review, we demonstrate with examples the high performance of the FOM, in particular,
when combined with the FEM. Source codes are given for the purpose of wide utility. In Section 2,
the algorithms to compute the spectral density, eigenvalues and their eigenvectors are introduced,
as well a method to map a general eigenvalue problem for a matrix with real eigenvalues onto
a lattice dynamical problem. Section 3 describes in detail the algorithm of the FEM which
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accelerates remarkably the calculation of eigenvalues and eigenvectors. Section 4 describes the
implementation of the FOM, ie., how to evaluate the purity and accuracy of calculated
eigenvectors and eigenvalues, how to choose the most efficient time-interval T. Fortran source
codes are then given. Algorithms for computing linear response functions of both classical
and quantum systems are presented in the context of the FOM in Sections 5 and 6, respectively.
Section 7 shows that the finite-time scaling approach for the FOM provides a useful way to study
the critical dynamics near quantum phase transitions. The extension to non-Hermitian matrices
is straightforward and its applications are demonstrated in Section 8. Section 9 gives a brief
description of the unstable-oscillator method (UOM) [20,21], which enables us to calculate the
extreme eigenvalues and their eigenvectors with high computational performance. Although the
UOM does not belong to the family of the FOM, there exists a close relationship between these
two methods. Conclusions are given in the final section. This article will be a good introduction
of the FOM to researchers and students engaging in numerical studies in physical science and
engineering.

2. Eigenvalue problem
2.1. Mapping onto lattice dynamical equations of motion

In this section, we focus our attention on a real symmetric matrix {Dmn}. The generalization to
a general type of Hermitian matrices with complex elements is straightforward. This will be
presented in Section 6 together with a scheme for computing linear response function for quantum
systems. The extension to non-Hermitian matrices is given in Section 8.

Assume that the matrix {Dm..} has a set of eigenvectors e(1) belonging to eigenvalue e
defined by

erem(4) =Y. Dmnen(7) . 2.1)

Since the matrix {Dnn} is real symmetric, all eigenvalues are real and eigenvectors belonging to
different eigenvalues are orthogonal. Eigenvector e(4) is chosen to satisfy the orthonormal condi-
tion Y, e,n(A)en(4) = d,;. If the matrix {D,,,} has negative eigenvalues, we add an appropriate
amount of &y > |en,| to the diagonal elements of the matrix {D,,,} so that the minimum eigenvalue
emin T €0 can be always positive. This is due to the fact that the eigenfrequencies of mapped lattice
dynamical systems should be real as understood below.

The mapping of Eq. (2.1) onto the equations of lattice dynamics is done by

2

Fxm(t) = - Z D;nnxn(t) 5 (22)

where

D;nn = Dmn + 5mn80 (23)
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and x,(t) denotes the displacement of the particle on the mth site. In Eq. (2.2), the mass of the
particle at the mth site is supposed to be unity and D,,, plays a role of the force constant between
mth and nth particles. For standard lattice dynamics, the condition between force constants
Y wDun = 0 should hold from the infinitesimal translational-symmetry of the system as a whole,
which is found by putting x,,(t) = const. for any m in Eq. (2.2) [10]. It is not necessary, in general, to
impose this condition in our cases so that we can treat an arbitrary set of the force constants
D,,, depending on the problem in hand.
Each displacement x,,(¢) can be decomposed into a sum of normal modes as

Xu(t) =3, Qu)em(4) , (2.4)

where Q,(t) is the time-dependent amplitude with which the mode A contributes to x,,(t), and varies
as ~exp( — iy, t) (u7 = ¢, + o). The squared uZ comes from the second derivative with respect to
time ¢ of Eq. (2.2), as seen by substituting Eq. (2.4) into Eq. (2.2). Since u3 should be positive, the
matrix D,,, should be modified into D,,, expressed by Eq. (2.3). Hereafter we call u, and ¢,
respectively, as eigenfrequency and eigenvalue for clarity.

2.2. Spectral density

The spectral density is calculated from Eq. (2.2) by the following procedures [7]. The displace-
ment x,(t) and the velocity x,,(t) are set to be zero at t = 0 in Eq. (2.2). Then the periodic force
F,, cos(t) is imposed on the mth site. Here F,, should be chosen as

F,, = Fqcos(¢,,) , (2.5)

where ¢,, is a random quantity distributed uniformly in the range 0 < ¢,, <2m, and F, is
a constant.
As a next step, we introduce the energy function E(t) of the system given by

50 = 5{S 50+ T 3 5a0Dpno}

1

=372 {030 + 1303(0)} (2.6)

In deriving the last relation from Eq. (2.4), the orthonormal condition between eigenvectors e(4) is
used. Let us define the quantity &,(t) expressed by

(0 = 04(1) +ip2Q4(0) - 2.7
Using this quantity, the r.h.s. of Eq. (2.6) leads to

1
E@) =352, 16007 . (2.8)
A
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From Egs. (2.2), (2.4) and (2.5), the equation of motion under the external periodic force,

;1:2 Xnu(t) = — Z D}, x,(t) + F,, cos(Qt) (2.9)
becomes
Ca) — 80 = T Fucost@0e,(). 2.10

Solving analytically this equation under the initial condition &,(0) = 0, the quantity &, att = T is
expressed by

é 111/1 { } i(Q_llz)T _ 1 (2 11)
Fpen(d) p————— . .
Z 1(Q — w)
Thus, one has the energy function of the system E(T) by combining Egs. (2.8) and (2.11) as

E(T) = Z{ZFm el } it — T2 212

The averaged value of E(T) over ¢,, provides
2 T 2
(E(T)) = Z sin {(M L }<Z Y. em(A)eq(2) cos(¢p,,) cos(d,) >

sz{(m T/2}
Z Q)Z >

(2.13)

A
where the terms satlsfymg m = n remain in the summations over m and n. After a sufficiently large
time T, only modes A’s belonging to eigenfrequencies u, in the vicinity of 2 contribute to the sum in
Eq. (2.13). For a large system size N (the size of the matrix {D,,,}), it is not necessary to average over
all possible ensemble {¢,,} explicitly. 1t suffices to choose a single configuration of {¢,,}. For
a proper time-interval T, Eq. (2.13) yields

nTF
025,“/1 -

TNF3? ~
_T ng @), (2.14)

CE(T)

where Z(Q) is the density of states for the mapped system characterized by D,,,. Thus, we can relate
the energy function E(T) to the density of states Z(u).
The spectral density %(e) for the original matrix D,,, is obtained by multiplying & by the Jacobian

du(e)
de

D(e) = ‘ Z(w

4
 ATNF3 /e + ¢

CE(T)) . (2.15)
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The calculated spectral density %(e) should be normalized as
J YD(e)de=1. (2.16)

To summarize this section, we should point out the following advantages for computing the
spectral density: (i) The spectral density can be obtained within a required arbitrary energy range.
(i) The energy resolution can be controlled by choosing the time-interval T [see Eq. (2.13)]. This is
particularly efficient for calculating the smooth part of the spectral density. (iii)) The computing time
scales linearly with the matrix size N in the case of sparse matrices.

2.3. Eigenvalues and their eigenvectors

By solving Eq. (2.9) under the initial conditions x,(t = 0) = 0 and x,, (¢t = 0) = 0, the displace-
ment Xx,,(t) after the time-interval T is expressed by

Xm(T) =Y, F;0(, 3, T)ew(2) (2.17)
A
where
F, = Z F,e.(2) (2.18)

and

_ 2s8in{(Q + wy)t/2} sin{(Q — w,)t/2}

h(Q, uy,t) = 2.19
(2 12,1) o2 (2.19)

For a sufficiently large time T, only a few eigenmodes with eigenfrequencies p; close to € contrib-
ute to the A summation in Eq. (2.17). One can accelerate the calculation by, after the time
interval-T, replacing the amplitude of the periodic force F,, at the mth site by

Fp = x,(T) . (2.20)

The initial values x,, (t = 0) and %,, (t = 0) at the mth site are set to be zero again, and we follow the
time development of Eq. (2.9). After p iterations of this procedure, the displacement x,,(7T) becomes

XP(T) =Y F, Q. 15, Tew(7) - (2.21)
A

After a sufficiently large p, only a single eigenmode A; (u;, ~ Q) survives such as
xP(T) ~ Ce,(iy) (2.22)

where C is a constant. This relation is used to calculate a precise eigenvalue u;, as shown in
Section 4.
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3. Time development of large-scale dynamical systems
3.1. Standard numerical methods

It is necessary, in order to solve eigenvalue problems in terms of the FOM, to calculate the time
development of coupled equations of motion of forced oscillators given by Eq. (2.9). Since the most
time-consuming part of the FOM lies in this, the efficient routine for Eq. (2.9) is crucial for high
performance.

The simplest way to integrate an ordinary differential equation such as Eq. (2.9) is the Euler
method [12,13]. In this method, Eq. (2.9) is divided into a set of two equations,

(;1 Zm(t) = — Z D, x,(t) + F,, cos(Q1) ,
%xm(t) — 2. (3.1)

By discretizing time t into a step 7, Eq. (3.1) becomes

2+ 1) = zp(l) — T[Z Dipxa(l) — Fo cos(er)} ,

Xp(l + 1) = x,(]) + t2,,(]) , (3.2)

where x,,(l) and z,,(]) are the displacement and the velocity of the mth particle with mass m = 1 at
the time ¢t = It with integer [. For simplicity, we illustrate here a system with a single degree of
freedom, oscillating with the frequency p in the absence of the external force. In this case, one can
write down Eq. (3.2) with F,, = 0 in the matrix form

z(l+ 1 1 — 2o\l
o=l 1)) @
x(I+1) T 1 x(0)
The determinant J of the matrix in Eq. (3.3) is J = 1 + p?t? being always larger than unity. This
means that the amplitude of the oscillation eventually diverges even if 7 is chosen to be arbitrarily
small.

Williams and Maris [7] have employed a modified version of the discretization scheme as
follows:

Zn(l + 1) = z,u(l) — r[z Dl —F, cos(er)} ,

Xl + 1) = x() + 12,1+ 1) . (3.4)

This modified Euler method [12,13], sometimes called the Verlet method [22], yields a matrix
representation of coupled equations corresponding to Eq. (3.3) of the form

<Z(l + 1)) B <1 — it )(z(l)) (35)
xi+1)) \= 1—p22)\x))’ '
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for which one has the Jacobian determinant J = 1 for an arbitrary 7. One should remark that 7 is
bounded within a finite range. Solving Eq. (3.5), one finds that x(I) oscillates with the frequency
(see Section 9 and Ref. [7]).

2
== sin1<ﬂ> . (3.6)
T 2

From Eq. (3.6), the effective frequency p* is close to the true frequency u only for ur <2, but
u* becomes complex if ut > 2. Thus, 7 should be chosen less than 2/u. For a system with many
degrees of freedom, this condition should be understood as

UmaxT < 2 5 (37)

where [i,., 1S the maximum frequency of a mapped dynamical system. When ., 7 <2, we must
correct the frequency in accordance with Eq. (3.6). It should be emphasized that the accuracy of
X, OF z,, is O(t?) after the correction by Eq. (3.6). This is because the modified Euler method is
based on the second-order expansion of Eq. (3.1). Therefore, we must take a quite small value of 7 to
obtain accurate results, which implies that even the modified Euler method consumes a large
amount of computing time.

The Runge-Kutta method provides a higher-order expansion of Eq. (3.1) [1,23,24]. This method
makes it possible to calculate x,, and z,, very accurately (the nth-order Runge-Kutta method gives
the accuracy of O(t")). However, the computing time of the fourth-order Runge-Kutta method, as
an example, takes at least four times larger than the case using the Euler method with the same time
step 7. This is not suitable for evaluating the time evolution in the FOM. Any other numerical
technique to integrate ordinary differential equations also requires a longer computing time for
obtaining reasonable accuracy. The common feature in these methods is that equations of motion
are expanded in the time domain [1]. Thus, the dynamical variables (x,, and z,,) at every time step
up tot = T are computed. For the FOM, one does not require the time development of dynamical
variables during the time interval 0 <t < T. We need only the displacements and the velocities
at t = T. A numerical method remarkably suitable for this purpose has been proposed [14-19].
By incorporating this method, which we call hereafter the fast time-evolution method (FEM)
after Ref. [19], the efficiency of the FOM is extraordinarily enhanced as shown in the next
subsection.

3.2. Fast time-evolution method

The fast time-evolution method (FEM) [14-19] enables us to obtain directly displacements and
velocities of a dynamical system at an arbitrary time ¢, without pursuing displacements (or
velocities) during the time interval O < ¢t < T. The method is based on the Chebyshev polynomial
expansion of the formal solution of the ordinary differential equations in the eigenfrequency
domain. It is possible to compute very accurately displacements and velocities by the FEM with an
extremely short computing time which scales linearly with the number of variables and evolution
time. Although the FEM is applicable to any type of Sturm-Liouville differential equations, we
focus our attention onto the lattice dynamical equations of motion such as Eq. (2.9). We describe
here the details according to Ref. [19].
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Eq. (2.9) can be symbolically written as

<§—:2 + D>x = fcos(Qt) , (3.8)

where D, x, and f are the matrix and the vectors whose elements are D,,,, x,,, and F,,, respectively.
Here, we denote matrices and vectors by capital and lower-case boldface letters, respectively. The
initial conditions are set as

x(O) =Xo
x(0) =z . (3.9
The formal solution of Eq. (3.8) under the initial conditions Eq. (3.9) is given by

= cos( ft smf/\/_7t [COS QtD — ;;SI ft J (3.10)

where I is the unit matrix. Functions of the matrix D should be understood as power series such as
a Taylor expansion.

In the FEM the time ¢ is regarded as a parameter and we expand Eq. (3.10) in terms of a complete
set of functions ¢, (D). The functions ¢,(D) should satisfy the following conditions: (i) Expansions of
functions cos(\/Bt), sin(\/l_)t)/\/ﬁ, and [cos(Qn)I — cos(\/l_)t)] /(D — Q*I) by {¢,(D)} should rap-
idly converge for the purpose of saving computer resources such as computing time and memory.
(i1) The functions ¢,(D) are orthogonal polynomials of D, because ¢, (D) should be easily calculated
from D, e.g. using the recursion relation. (iii) The functions ¢,(D) have to be defined within a finite
eigenvalue domain, because the spectrum of D is bounded. The Chebyshev polynomials T ,(D)
satisfy all these conditions. The condition (i) is, in particular, guaranteed by the fact that the
Chebyshev polynomials are almost the minimax polynomials [1] and the error is uniformly
distributed in the eigenvalue domain.

Since the domain of the Chebyshev polynomialsis [ — 1, 1], the matrix D should be converted to
the matrix G having a spectrum bounded in the range [ — 1, 1]. Assuming &,,, and &,;, to be the
maximum and the minimum eigenvalues of the matrix D, we have

Go— 2 p_fmn T i (3.11)

€max — €min €max — ©min

where both ¢,,, and ¢,,;, are estimated by the Gerschgorin’s theorem [25,26] as will be mentioned
in Section 4 [en., and &y, are positive because of Eq. (2.3)]. The functions of the matrix D in
Eq. (3.10) are expanded as follows:

8

cos(\/Dr) = Z a,(0T,(G) , (.12

sin(y/Dt) _ w 1T.(6). (3.13)
BV

cos(Qt)I—cos \/_t) i (3.14)

— QI
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In actual calculations, the infinite upper limit of the summations in Egs. (3.12)-(3.14) should be
truncated up to P — 1, where P is an appropriate cutoff so that |a,(¢)|, |b,(t)|, and |c,(t)] with p > P
are much smaller than unity. As a result, Eq. (3.10) becomes

x(t) ~ [le a,()T ,(G) }xo n [ Y by I,(G)}O + [le cp(t)Tp(G)] f. (3.15)

p=0 p=0
The Chebyshev polynomials satisfy the discrete orthogonality relation given by [1,27,28]
o m
Z Xk)T Xk) 251,,1(1 + 5170) , (316)
where x; (k=1,2,...,
1
X = cos[n(k 2)} , (3.17)
m

and p,q < m. Using Eq. (3.16), the formula T ,(x) = cos[pcos™(x)], and the orthonormal condi-

m) are the kth zeros of T,,(x), namely,

tions for T ,(x) expressed by [28]

[ Tt
-1 /1 —x?

Eépq(l + 51)0) 5

(3.18)

one can obtain the explicit forms of coefficients a,(t), b,(t), and c,(t) defined by Eqgs. (3.12)-(3.14) as

follows:
[ mpg +3)
a,(t) = a +5po)P Z cos| —p— cos(&,t) , (3.19)
2 [ np(q + 3) |sin(&,1)
b,(t) = A5 0.0)P 5p0)P 2 Z cos_ P Z, (3.20)
B 2 P-1 p(q + 3) |cos(Qt) — cos(&,1)
Cp(t) = quo COS P 55 — QZ 5 (321)
where
_ Emax + Emin €max — €min Tl:(q + %) 12
¢, = { LTI T cos[ . ]} | (3.22)
The velocity z is directly obtained from Egs. (3.15) and (3.19)-(3.21):
P—-1 P—-1
7(t) ~ [ Y ap(t)Tp(G)}xo + Z b,( }zo + |: Y ép(t)Tp(G)}f, (3.23)
p=0 Lp=0 p=0
where
o 2 Gt g+,
a,(t) 0T 51)0)qu0 COS_T:|fq sin(&,1) , (3.24)
b,(t) = a,(t) , (3.25)
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(3.26)

. 2 P [Ttp(qué)}éq sin(&, 1) — Qsin(Qr)
&(0) .

=————— % cos
1+ 51,0)qu‘0 P & —0°

It should be noted that these coefficients reflect the properties of the matrix G (then D) only via
€max and €min-

In calculating x(t) or z(¢) by Eq. (3.15) or (3.23), two parts of computations seem to require long
computing times. One is the calculation of the Chebyshev polynomials T ,(G) of the matrix G. The
recurrence formulae of the Chebyshev polynomials, however, make this calculation very fast, which
are given by [28]

T1(x) =xTo(x),
Tyv1(x) =2xT,(x) = T,-1(x) . (3.27)

Actually, what we need is not T ,(G) itself, but the vectors such as x, = T,(G)x,. From Eq. (3.27),
these vectors are given by

X1 = GxO , (328a)
X1 =2Gx, — X, 1 . (3.28b)

Notice that there are no matrix-matrix multiplications in Eq. (3.28) which take considerable
computing time. Calculations of the coefficients a,(t), b,(t), and c,(t) in Egs. (3.19)-(3.21) seem to
require P? operations. However, all of these expressions given by Egs. (3.19)—(3.21) and (3.24)-(3.26)
take the form of

P-1 1
W,= Y w, COS[MJ : (3.29)

This is the Fourier cosine transform. The fast Fourier transform (FFT) technique reduces the
number of operations in computing the coefficients from P? to Plog, P, which implies that the
coefficients are calculated in quite a short time.

In order to estimate the appropriate value of the cutoff parameter P, we illustrate with a very
simple situation, i.e., a single pendulum described by X + &x = 0 with the initial conditions of
x(0) = xo and x(0) = 0. Assume that ¢ can take values in the range [emin, émax ]. Corresponding to
Eq. (3.10), we have the solution x(t) = xq cos(\/;t). The Chebyshev expansion of cos(\ﬁt) is written

as COS(\/;l') = z:):oap(t)Tp(S,)a where ¢ = 28/(8max - Smin) - (Smax + 8min)/(gmax - Smin)- USiIlg the
orthonormal conditions Eq. (3.18), we have

2 Ve, 0T, €)
“P“)—mflﬁdg | 3
where

’ _ Cmax — €min €max + Emin
c(e,t) = cos(\/ 3 g + 3 t> . (3.31)
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The integrand of Eq. (3.30) contains the product of two oscillating functions. The function c(¢', t)
oscillates (\/€max — ~/ &min)t/27 times in the ¢ domain of [ — 1,1]. The Chebyshev polynomial

T,(¢') oscillates with p zeros. If p becomes much larger than (\/emax — /&min)t/27, T (¢’) oscillates
rapidly in a period of ¢(¢, t) as a function of ¢ and the integral of Eq. (3.30) becomes negligible. This
argument can be extended to a system with many degrees of freedom described by Eq. (3.8).
Therefore, the cutoff parameter is estimated by

P = y(\/€max — ~/ Emin)t - (3.32)

The coefficient y is of the order of unity in actual cases.

Finally, we compare the number of operations in the (modified) Euler method and the FEM. For
simplicity, we assume ép;, = 0. In the Euler method, the most time-consuming part is in the
calculation of Eq. (3.2) or (3.4). The calculation of each z,(I + 1) contains the summation of
N (system size) terms. Therefore, it requires roughly N?T/t operations to obtain displacements
and velocities of all sites at the time T. Since the matrix {D,,,} is usually sparse, the number of

operations is actually reduced to NT/t. If 7 is chosen as ./&n.,T = const., this becomes

VEuler N/ €max T» Where yguer 1S @ proportionality coefficient. On the other hand, the most time-
consuming part of the FEM is the calculation of Eq. (3.28). In this procedure, we have to calculate
P matrix-vector multiplications in N dimensions. This requires NP operations. Since P is

proportional to /én.x T as given by Eq. (3.32), the number of operations for the FEM becomes

proportional to N./en.«T and the computing time is given by YrgmN«/émax T, Where ypgpy 1S
a proportionality coefficient for the FEM. Although the computing times for both methods have
similar forms, i.e., TSrier = VEuler NA/Emax T and TEEN = YrEMN/ €max T» the coefficient ygpy is
much smaller than yg,. in actual calculations. For a problem of the time evolution of a
lattice-vibrational system, for example, ypgy iS 12 orders of magnitude smaller than ygye,,
if we compare these coefficients under the condition that both methods give the same precision
of x(t). Even for the largest time step t for the modified Euler method (e.g., pmaT = 1.99)
with which the FOM presents a reliable result, the coefficient g, 1S about ten times larger
than yrgum.

4. Implementation of the FOM
4.1. Evaluating purity and accuracy of calculated eigenvectors and eigenvalues

In most conventional eigenvalue analyses, eigenvalues are directly obtained by a diagonalization
of a given matrix itself, and then eigenvectors belonging to these eigenvalues are computed. In
contrast to this scheme, the FOM offers a quite different one. Namely eigenvectors are calculated at
first as described in Section 2.3, and then we compute corresponding eigenvalues by using these
eigenvectors. This section gives the scheme for evaluating the purity of eigenvectors and the
accuracy of eigenvalues obtained from those eigenvectors. This routine has been described by
Yakubo et al. [8].
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In order to evaluate the purity of the eigenvector calculated by the FOM, we introduce the
quantity J,, given by

5m =dm — lazbm > (41)

where a,, and b,, are
aw =Y Dy xPX(T) (4.2)

and
b, = xP(T) . (4.3)

We see from Egs. (4.1)-(4.3) that J,, vanishes for any m if xX?(T) = e,,(1). The quantity ji in Eq. (4.1)
will be defined later.
Let us introduce the deviation ¢ defined by

_ 2udm
5= St (4.4)

Using Egs. (4.1)—(4.3), we have
Iy = 20T, + il

62 4.5
- , 45)
where
Io=)Y ba, (4.6a)
Iy =) a,b, , (4.6b)
Iy =) ay . (4.6¢)
By differentiating Eq. (4.5) with respect to Ji?, the deviation 62 is minimized when
r
~2 2
== 4.7
T (4.7)
and the minimum value of 6* becomes
I'oly — T3
52 = 0”4 2 4.8
ol (4.8)

Using Egs. (2.1), (2.3), (2.21), and (4.6), I', (v = 0,2,4) can be alternatively expressed as

ry=y Aiw, (4.9)
A
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where A4, is the amplitude of the mode A given by

Ay, = F;hP(Q, u;,1), (4.10)
and pj = ¢, + €. In order to examine jt and J, we suppose that the displacement pattern {x%(T)}

primarily consists of two adjacent eigenvectors (4 = Ay, 4,). For this situation, one finds from
Egs. (4.7) and (4.8)

‘le — Ail H%l + A%z lu’%z

4.11
ey @11
AZ AZ 2 2 \2
52 — - /112/12(#2/11 i_:ullz)z . ) (411b)
(A7, + AL NAG ps, + As,13,)
If |,u,11 - ,u12| < (‘u,ll + ‘u,lz)/2 and All > Azz, one haS
2An|A
5~ oM (4.12)
i |A;,

The frequency difference Au ( = |w;, — p;,|) roughly equals to [NZ(u)] ™ L, where %(u) is the density
of states of the mapped system. Namely, one can estimate the mixing ratio of modes (= 4,,/A4;,)
from the value of J calculated by Eq. (4.8).

The quantity ji becomes very close to u;, in the case of 4;, > A;,. From Eq. (4.11a), we find

A
W =i+ Au< A"z > . (4.13)
A1

We see that the difference between fi and u;, depends on the product of two small quantities.
Hence, i and [i* — ¢, calculated by Eq. (4.7) are extremely good approximations to the true
eigenfrequency p;, and the true eigenvalue ¢, , respectively.

It is worthwhile noting that the selected mode 4, is not always the mode with the eigenfrequency
closest to the external frequency Q. Due to the oscillating property of the function (€2, u;, t) given
by Eq. (2.19), the selected mode depends on the choice of the time interval T. An efficient way to
choose the value of T will be discussed in the Section 4.3.

4.2. Choice of the efficient time-interval T for computing the spectral density

One of the merits of the FOM is that we can calculate the spectral density with an arbitrary
resolution d¢ by choosing the proper time interval T. Let us describe the criterion for the choice of
the time T to control the resolution de. The frequency width du for the mapped system (correspond-
ing to o¢) should be chosen as

S = dg‘f)ag , (4.14)
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where o¢ is the eigenvalue resolution required for the eigenvalue problem of the original matrix.
Eq. (2.13) indicates that the frequency width ou is inversely proportional to the time T, as given by

_4n

- (4.15)

ou

Since ui = ¢, + &o, for the required resolution Je, the time interval T should be taken as

47 _8my/e + & 4.16)

T = lauedass = o

The resolution d¢ must satisfy the condition
oe > Ae 4.17)

where Ae = 1/N%(¢) is the mean level spacing of the eigenvalue sequence. This condition requires
that there should exist a sufficient number of eigenvalues within the spectral range ¢ ~ ¢ + Je.

As is mentioned in Section 3.2, the computing time of the FEM (and then the FOM) is
proportional to T. Therefore, Eq. (4.16) suggests that the computing time becomes shorter when
choosing &, to be smaller. However, if we set ¢y to be the smallest value for which all eigenvalues
are positive, ¢,;, becomes zero. In this case, the spectral density in the vicinity of ¢.;, has poor
accuracy because Z(¢) is proportional to 1/, /¢ + &, as given by Eq. (2.15). The parameter ¢, should
be carefully chosen by considering these competitive conditions (see Section 4.4.1). The time
interval T determined by Eq. (4.16) does not depend on N. This implies that the computing time for
the spectral density is proportional to N, and then the FOM for the spectral density is an O(N)
method.

4.3. Choice of the optimal time-interval T for eigenvalue analysis

As seen from the preceding discussion, the calculation of an eigenvector by the FOM includes
two key parameters, namely, the driving time interval T and the number of iterations p. It is crucial
for efficient calculations of eigenvectors to choose the optimal time interval T [8]. In this section,
we give a discussion concerning the most efficient choice of this parameter. If {x?(T)} consists of
two modes 4; and 4, as considered below in Eq. (4.10), we obtain, from Egs. (2.20), (4.10), and
(4.13), the expression for p required for a given accuracy d, as

m&mw—mwmmw+mme—ﬁ>

do k5,
ESIn[(2 — ) T/21sin[(2 + ) T/20(2% — 1i2,)

2ApF;,

p ~log . (4.18)
Eq. (4.18) indicates that the value of p diverges at times when the argument of the logarithm of the
denominator in Eq. (4.18) equals to + 1. At these times, h;, and h;, of Eq. (2.19) become identical,
and the ratio of 4;, to 4;, remains constant independent of the number of iterations p. On the
other hand, the number of iterations p vanishes when the denominator becomes infinite. These
cases correspond to either h;, or h;, being zero, or equivalently either A;, or A;, vanishing after
one iteration [Eq. (4.10)]. This argument is not valid in general because of the neglect of other
modes (43, 44, ...) excited by the external force. In fact h;,, h;,, ... take finite values at T.



256 T. Nakayama, K. Yakubo | Physics Reports 349 (2001) 239-299

1/pl\

1/p*

>
>

0 T* T

Fig. 4.1. Schematic plot for 1/p versus T for a fixed ¢ value. The solid line shows the fixed-d curve and the dashed straight
line has the largest inclination among lines intersecting the solid curve. The intersecting point provides the optimum time
interval T*.

When taking into account every excited mode, the value of p required for the given ¢ is
schematically plotted as a function of the time interval T in Fig. 4.1 (the fixed-0 curve). Since the
computing time varies as pT, we can draw a straight line for a fixed computing time in the T — 1/p
plane passing through the origin. The optimum time interval T is given by the point at which the
fixed-d curve intersects the straight line with the maximum slope (corresponding to the minimum
computing time).

It is not practical to calculate all eigenvalues of the system in order to obtain p for fixed ¢ as
a function of T. The fixed-0 curve, however, has some common features. At first, this curve rapidly
oscillates with a period of the order of m/Q2, as mentioned below Eq. (4.18). The second is that the
envelope of this curve slowly oscillates with a period of ©/Au (see Fig. 4.1). Therefore, the optimum
value of T is in the vicinity of T, given by

__T
- 2Au

=nND(e)\ /& + & . (4.19)

In actual calculations, we must find the optimum time-interval T* around T, at which 6 becomes
a minimum. The time interval T* is not the true optimum parameter, but is a good approximation
for our purpose.

It should be noted that calculations done by using different values of T do not always give the
same eigenvector, even though the calculated eigenvectors have the same degree of purity. This is
due to the oscillating property of the function h(€, u,, T). Evenif |4, /A;, | takes the same values, it
depends on T which mode belongs to the main mode 4;. For large T, the resonance width of
hQ, uy, T) becomes narrow, and two modes with frequencies closest to 2 are extracted alterna-
tively with a period of n/Q. For example, if we obtain an eigenvector e;, by using T* shown in
Fig. 4.1, the same eigenvector e;, will be calculated by choosing other values of T within the peak
containing T*. On the contrary, if one chooses T in the adjacent peak, another eigenvector e;, with
the frequency closest to Q will be extracted.

T,
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To summarize this subsection, it should be emphasized that (i) we can compute quite accurately
a specific eigenvalue and its eigenvector even for that in the central energy range, and (ii) we can
determine the degree of accuracy of eigenvalues and evaluate the purity of eigenvectors.

4.4. Codings for actual computations

In this subsection, we give Fortran source codes for the calculations of the spectral density and
an eigenvector of a general type of large matrix. Although a real symmetric matrix is illustrated, the
extension to Hermitian matrices with complex elements is straightforward. In Section 8, we
describe in detail how the FOM is extended for the case of non-Hermitian matrices.

Let us consider the following N x N sparse matrix:

a, form=n,

b, form=n+1,
D, = (4.20)
¢y form=n+L,

0  otherwise,

where a,,, b,,, and ¢,, are real and N = L. This type of matrix appears often in physical problems,
such as the lattice vibrations of two-dimensional (2D) systems and the 2D tight-binding model of
electrons. In order to eliminate the peculiarity of the sample matrix, we set a,,, b,,, and ¢,, to be
random variables distributed uniformly within the range [ — 1,1].

4.4.1. Spectral density

A Fortran source code to compute the spectral density of the matrix {D,,, } defined by Eq. (4.20)
is presented in Fig. 4.2. This program calculates spectral densities at NE (defined in line 24) points
in a region covering all eigenvalues. The resolution d¢ (DE in the program) of the spectral density is
RES_FACT times of the width of the eigenvalue space division (lines 25 and 74). From lines 41 to
55, matrix elements are defined. Since this matrix has negative eigenvalues, we should modify the
original matrix {D,,,} to {D;,,} as described by Eq. (2.3). According to the Gerschgorin’s theorem
[25,26], all eigenvalues of the matrix {D,,, } are involved in the region which is the union of closed
sets, defined by

N
S= 1) Sn. 4.21)
m=1

where

sz{s

In this program, the lower and the upper bounds of eigenvalues are estimated by this theorem (lines
59-66). The quantity ¢, appearing in Eq. (2.3) is chosen to be a sum between the negative sign of
this lower bound and an additional positive quantity E_SHIF'T (lines 26 and 67). If E_SHIFT = 0,
the lower bound of eigenvalues of the modified matrix {D,,,} becomes zero and the spectral density
has poor accuracy near the lower bound, because %(¢) given by Eq. (2.15) is proportional to

N
|8_Dmm| < Z |Dmn|} (422)

n¥m
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1 C SAMPLE PROGRAM FOR SPECTRAL DENSITY BY THE FOM

2 C

3 PARAMETER (L=1000,NPMAX=1024,N=L*L,N2=N+1,N3=N+L)
4 PARAMETER (NW=N3+L)

5 IMPLICIT REAL*8 (A-H,0-2)

6 REAL*8 MU,MU_MAX,LG2INV

7 DIMENSION A(N),B(0:N),C(-L+1:N)

8 DIMENSION A1(N),B1(0:N),C1(-L+1:N)

9 DIMENSION X(-L+1:N3),Z(-L+1:N3)

10 DIMENSION F(-L+1:N3)

11 DIMENSION FO(-L+1:N3),F1(-L+1:N3),F2(-L+1:N3)

12 DIMENSION COEF_LF (NPMAX) ,COEF_LFD(NPMAX)

13 CHARACTER*40 FILENAME

14 C

15 DATA A /Nx0.DO/, B /N2x0.DO/, C  /N3*0.DO/

16 DATA F /NW%0.D0/

17 DATA ZERO /0.0DO/

18 DATA ONE /1.0D0/

19 DATA TWO /2.0D0/

20 DATA PI  /3.141592653589793D0/

21 C

22 C << Set parameters >>>>>>>>>>>>33>>>>>>533333333333333333>5>>5>>>>>>>>
23 4

24 NE=100 ! Discretization number in eigenvalue space
25 RES_FACT=3.0D0 ! Resolution factor

26 E_SHIFT=1.0D0 ! Additional eigenvalue shift

27 CHI=1.0DO ! Parameter for Max order of Chebyshev

28 CONV=1.0D-10 ! Convergence parameter for Chebyshev exp.
29 1X=2139127681 ! Seed of random number

30 FEXT=1.0D0 ! Amplitude of external force

31 FILENAME=’spectral_density.data’ ! Qutput file name

32 c

33 C << Sizes of matrix >>>>>>>3>33>33333335353333333335353333535>>5>555>>
34 ¢

35 NNi=N ! Number of matrix element A

36 NN2=N-1 ! Number of matrix element B

37 NN3=N-L ! Number of matrix element C

38 4

39 C << Definition of matrix >>>>>>>>>>>33333>>>3>>333>33>3>>>>3>3>>>>>>>>>>
40 C

41 DO 100 I=1,NN1

42 CALL RANDOM(IX,R)

43 RND=TWO*R-ONE

44 A(I)=RND ! Value of matrix element A

45 100 CONTINUE

46 DO 110 I=1,NN2

47 CALL RANDOM(IX,R)

48 RND=TWO*R-0ONE

49 B(I)=RND ! Value of matrix element B

50 110 CONTINUE

51 DO 120 I=1,NN3

52 CALL RANDOM(IX,R)

53 RND=TWO*R-ONE

54 C(I)=RND ! Value of matrix element C

55 120 CONTINUE

56 c

57 C << Parameters for calculations >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
58 C

59 E_MINO=1.0D10 ! Eigenvalue lower bound of original matrix
60 E_MAX0=-1.0D10 ! Eigenvalue upper bound of original matrix
61 DO 200 I=1,NN1 ! Gerschgorin’s theorem

62 R1=A(I) -ABS(B(I))-ABS(B(I-1))-ABS(C(I))-ABS(C(I-L))

63 R2=A(I) +ABS(B(I))+ABS(B(I-1))+ABS(C(I))+ABS(C(I-L))

64 IF(R1.LT.E_MINO) E_MINO=R1

65 IF(R2.GT.E_MAX0) E_MAXO=R2

66 200 CONTINUE

67 EO=-E_MINO+E_SHIFT ! Total energy shift

Fig. 4.2. Fortran source code for calculation of the spectral density of the matrix defined by Eq. (4.20). The leftmost
number of each line is labeled for convenience to explain the program.



T. Nakayama, K. Yakubo | Physics Reports 349 (2001) 239-299 259

68 E_MIN=E_MINO+EO ! Eigenvalue lower bound of modified matrix
69 E_MAX=E_MAXO+EO ! Eigenvalue upper bound of modified matrix
70 DEL_E=E_MAX-E_MIN ! Auxiliary parameter

71 AVE_E=E_MAX+E_MIN ! Auxiliary parameter

72 MU_MAX=SQRT (E_MAX) ! Freq. corresponding to E_MAX

73 MU_MIN=SQRT(E_MIN) ! Freq. corresponding to E_MIN

74 DE=RES_FACT+DEL_E/NE ! Resolution of spec. density

75 C

76 C << Reforming matrix to one with positive eigenvalues >>>>>>>>>>>>>>>>
77 C

78 DO 210 I=1,NN1

79 A(I)=A(I)+EO ! Shifted value of matrix element A

80 210 CONTINUE

81 C

82 C << Reforming matrix for Chebyshev expansion >>>>>>>>>>>>>>>>>>>>5>>>>>
83 C

84 D_EINV=0NE/DEL_E

85 DO 220 I=1,NN1

86 A1(I)=(TWO*A(I)-AVE_E)*D_EINV

87 B1(I)= TWO*B(I)*D_EINV

88 C1(I)= TWO*C(I)*D_EINV

89 220 CONTINUE

90 C

91 C << Definition of external force >>>>>>>>>>>>>>>>>>>>3333>5>>>>>>>>>>>
92 C

93 DO 300 I=1,NN1

94 CALL RANDOM(IX,R)

95 RND=TWO*PI*R

96 F(I)=FEXT*COS(RND) ! External force

97 300 CONTINUE

98 C

99 C << Forced Oscillator Method >>>>>>>>>>>>>>>>>>>>>>>>>3>>5>>>>>>>>>>>>>
100 C

101 OPEN(10,FILE=FILENAME)

102 RNEINV=DEL_E/NE

103 DEINV=8.0D0*PI/DE

104 LG2INV=0NE/LOG(2.0D0)

105 DO 1000 IE=1,NE

106 E=E_MIN+IE*RNEINV

107 MU=SQRT(E) ! Frequency of external force
108 T=MU*DEINV ! Time interval

109 NP=MAX (10, INT(CHI*T*(MU_MAX-MU_MIN))) ! Order of T_p for T
110 NP=2%% (INT(LOG(DBLE(NP+1) )*LG2INV)+1) ! NP --> NP=2%*NL
111 DO 400 I=-L+1,N3 ! Initialization

112 X(I)=ZERO ! Displacement

113 Z(1)=ZERO ! Velocity

114 400 CONTINUE

115 c

116 CALL COEF_L(MU,T,NP,NPMAX,E_MAX,E_MIN,CONV,COEF_LF,COEF_LFD)
117 CALL FEM_L(At,B1,C1,F,X,2,L,N,N3,NP,NPMAX,

118 & COEF_LF,COEF_LFD,F0,F1,F2)

119 c

120 E_KIN=ZERO ! Kinetic energy

121 E_POT=ZERO ! Potential energy

122 DO 600 I=1,NN1

123 E_KIN=E_KIN+Z(I)*Z(I)

124 E_POT=E_POT+( A(I)*X(I)+

125 & B(I)*X(I+1)+B(I-1)*X(I-1)+

126 & C(I)*X(I+L)+C(I-L)*X(I-L) )*X(I)

127 600 CONTINUE

128 C

129 C << Qutput >>>3>333333333333333353333333535355355353>533555555555555>>
130 C

131 C Total energy

132 E_TOT=0.5D0*(E_KIN+E_POT)

133 C Variable in original eigenvalue space

134 E_ORG=E-EO

135 C Spectral density as a function of MU

136 SD_MU=8.DO*E_TOT/(PI*T*NN1*FEXT*FEXT)

Fig. 4.2. Continued.
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137 C Spectral density as a function of E_ORG
138 SD_E=0.5D0*SD_MU/MU

139 WRITE(10,2000) E_ORG,SD_E

140 1000 CONTINUE

141 CLOSE (10)

142 2000 FORMAT(D19.14,3X,D19.14)

143 C

144 STOP

145 END

Fig. 4.2. Continued.

1/{/¢ + €0 = 1/u (line 138). The modified matrix {D,,, } and the external force are defined in lines
78-80 and lines 93-97, respectively. The FOM for the spectral density starts from the line 101. The
time interval T is chosen in accordance with Eq. (4.16) (line 108). The energy-function calculation is
done in lines 120-127.

The time evolution by the FEM is calculated by two subroutines COEF_L (line 116) and FEM_L
(lines 117-118). The subroutine COEF_L provides coefficients ¢,(t) and ¢,(t) (represented by the
arrays COEF_LF and COEF_LFD, respectively, in the program) given by Egs. (3.21) and (3.26).
Since x, = 0 and z, = 0 in the calculation of the spectral density, coefficients other than c,(t) and
¢,(t) are not necessary. The computation of x(t) and z(t) using these coefficients are performed in the
subroutine FEM_L. Details of these subroutines will be explained in Section 4.4.3.

We should mention here the cutoff parameter P. As given by Eq. (3.32), P is estimated as
P = %(\/€max — ~/ €min)T- Since the time interval T is an increasing function of ¢ as expressed by
Eq. (4.16), the maximum value P,,,, of the cutoff parameter iS 8T)(émax — ~/ EmaxEmin)/0E Where
%> €min> aNd &n., correspond to CHI (line 27), E_MIN (line 68), and E_MAX (line 69) in the
program, respectively. Considering the definition of d¢ in this sample, i.e., )¢ = DE = RES_FACT"
(émax — €min)/NE, P, 1s written as

_ 8y - NE./Emax . (4.23)
RES_FACT (\/emax + /emin)

The size of the arrays COEF_LF and COEF_LFD is at least larger than P,,,,. As will be mentioned
in Section 4.4.3, coeflicients c,(t) and ¢,(t) are calculated by using the fast Fourier transform (FFT)
technique. Thus, the size of these arrays should be a number such as 2™ (m is a certain integer). The
least value of m satisfying 2™ > P,,,, can be evaluated from Eq. (4.23) (line 110). However, at the
stage of the dimension declaration in the program, values of ¢,,,, and ¢, (then P,,,, also) are still
unknown. Therefore, we should calculate these parameters, at first, for the given matrix by the
Gerschgorin’s theorem [25,26], and then determine the required size of the arrays COEF_LF and
COEF_LFD (NPMAX in line 3).

The most time-consuming part in this program is in the subroutine FEM_L. The computing time
for FEM_L is proportional to NE?-N/RES_FACT. In the case that N = 10° (L = 1000),
NE = 100,and RES_FACT = 3, for example, it totally takes 585 s to obtain the spectral density by
using the FACOM VPP500 (the program is executed in a single processor). The required memory
space is proportional to N + \/N in this program. In order to avoid the use of IF statements in the
deepest loop (lines 31-33 of the subroutine FEM_L shown in Fig. 4.7), the sizes of some arrays

max
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(B, C, X, Z, etc.) are larger than the minimum required. If we do not use this trick, the required
memory is simply proportional to N.

4.4.2. Eigenvalues and eigenvectors

A sample program to compute an eigenvalue and its eigenvector is presented in Fig. 4.3. A part of
the program (lines 43-83 and 96-115) to define matrix elements and amplitudes of the external
force and to modify the matrix is the same with that for the spectral density (lines 35-73 and 78-97
in Fig. 4.2). In this program, an eigenvalue closest to E = 0.2 (line 30) and the corresponding
eigenvector are calculated. The value of the spectral density at E = (0.2 given in the line 31 is
assumed to have been already calculated by the FOM for the spectral density (Fig. 4.2). The
program repeats iterations (the number of iterations is bounded by NIT_MAZX defined in the
line 33) until the quantity |A4,,/A4;,| given by Eq. (4.12) becomes less than PURITY defined in
the line 32. The iteration procedure starts from the line 125. For an efficient calculation, the time
interval in each iteration should be chosen to be a value close to Ty = w/2Au [see Eq. (4.19)], at
which 6 becomes a local minimum as a function of time. In order to find this time interval, the time
development in each iteration is divided into two parts. In the first part (lines 133-134), the
FEM gives x(t) and z(t) at the time T, = n/2Au (TO in line 86). In the second part (lines 155-182),
the time-evolution calculation is continued up to TO + TS with a small time step TDIV (line §8),
where TS (line 87) is half the period of the external force and the quantity § at each time
step is calculated (lines 163-181). The optimum time interval T* [see below Eq. (4.19)] in each
iteration is the time at which 0 becomes minimum in the range TO <t < TO+TS (line 177). If
|A,,/A;, | at t = T* is smaller than PURITY, the program quits the iteration and jump to the
output routine (line 186). Otherwise, the iteration procedure is repeated with new external forces
(lines 187-194).

In the subroutines COEF_L and FEM_L, the time interval is set to be T given by Eq. (4.19).
From Eq. (3.32) and ¢,;, = 0 (because of E_SHIFT = O) in the eigenvector calculation, the
maximum value of the cutoff parameter P,,,, for these subroutines is expressed by

Poox = TN D(e)\/ emax(€e + €0) . (4.24)

As in the case of the spectral density, the arrays COEF_LF and COEF_LFD should be declarated
with a size of 2™ (due to the FFT) larger than P,,,, given by Eq. (4.24) (NPLMAX in lines 3 and 14).
The time interval in the subroutines COEF_S and FEM_S is quite short (TDIV in line 88). The
value of P, for these subroutines is also estimated by Eq. (3.32) as

Piax = %+/émax - TDIV, (4.25)

and the size of the arrays COEF_SF, COEF_SXD, COEF_SZ, COEF_SF, and COEF_SFD is
determined by Eq. (4.25) (NPSMAX in line 3 and lines 15-17).

It should be noted that the FOM for eigenvectors and eigenvalues is an O(N?) method, while the
FOM for the spectral density is an O(N) method as mentioned in Section 4.2. This is because the
computing time of the FEM is proportional to NT, as mentioned below Eq. (3.32) and Ty oc N
[see Eq. (4.19)]. If we perform this program with L = 500 and E = 0.2 in a single processor of the
FACOM VPP500, it takes about 3300 s per iteration. The total computing time is given by
multiplying this time by the number of iterations, which is usually less than 10.
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1 C SAMPLE PROGRAM FOR EIGENVALUES AND EIGENVECTORS BY THE FOM

2 C

3 PARAMETER (L=500,NPLMAX=2097152,NPSMAX=16,N=L*L,N2=N+1,N3=N+L)
4 PARAMETER (NW=N3+L)

5 IMPLICIT REAL*8 (A-H,0-Z)

6 REAL*8 MU,MU_MAX

7 DIMENSION A(N),B(0:N),C(-L+1:N)

8 DIMENSION A1(N),B1(0:N),C1i(-L+1:N)

9 DIMENSION X(-L+1:N3),Z(-L+1:N3)
10 DIMENSION F(-L+1:N3)
11 DIMENSION XO(-L+1:N3),X1(-L+1:N3),X2(-L+1:N3)
12 DIMENSION ZO(-L+1:N3),Z1(-L+1:N3),Z2(-L+1:N3)
13 DIMENSION FO(-L+1:N3),F1(-L+1:N3),F2(-L+1:N3)
14 DIMENSION COEF_LF(NPLMAX),COEF_LFD(NPLMAX)
15 DIMENSION COEF_SX(NPSMAX),COEF_SXD(NPSMAX)
16 DIMENSION COEF_SZ(NPSMAX)
17 DIMENSION COEF_SF(NPSMAX),COEF_SFD(NPSMAX)
18 CHARACTER*40 FILENAME
19 C
20 DATA A /N%0.0D0/, B /N2x0.0DO/, C /N3*0.0DO/
21 DATA A1l /N*0.0D0O/, B1 /N2%0.0DO/, C1 /N3%0.0DO/
22 DATA F /NWx0.0D0/
23 DATA ZERO /0.0DO/
24 DATA ONE /1.0DO/
25 DATA TWO /2.0D0/
26 DATA PI  /3.141592653589793D0/
27 C
28 C << Set parameters >>>>>>>>>>>>>>>>>>>>>>>>3>>>>>>>>>>>>>>>>>>>>>>>>>>
29 C
30 E=0.2D0 ! Calculate the eigenvalue closest to E
31 SD=0.23D0 ! Spectral density at E
32 PURITY=1.0D-3 ! Criterion for the conversion
33 NIT_MAX=50 ! Maximum number of iterations
34 NTS=20 ! Number of suppl. time int. division
35 CHI=1.0D0 ! Parameter for Max order of Chebyshev
36 CONV=1.0D-10 ! Convergence param. for Chebyshev exp.
37 I1X=2139127681 ! Seed of random number
38 FEXT=1.0DO ! Amplitude of external force
39 FILENAME=’eigenvector.data’ ! Qutput file name
40 C
41 C << Sizes of matrix >>>>>>>>>3333333333333333553335533353333>555>>>550
42 C
43 NN1=N ! Number of matrix element A
44 NN2=N-1 ! Number of matrix element B
45 NN3=N-L ! Number of matrix element C
46 C
47 C << Definition of matrix >>>>>>>>>>>>3>3>3>>3>>3>>>5>3>>>>>>>>>>5555>>>
48 C
49 DO 100 I=1,NN1
50 CALL RANDOM(IX,R)
51 RND=TWO*R-ONE
52 A(I)=RND ! Value of matrix element A
53 100 CONTINUE
54 DO 110 I=1,NN2
55 CALL RANDOM(IX,R)
56 RND=TWO*R-ONE
57 B(I)=RND ! Value of matrix element B
58 110 CONTINUE
59 DO 120 I=1,NN3
60 CALL RANDOM(IX,R)
61 RND=TWO*R-ONE
62 C(I)=RND ! Value of matrix element C
63 120 CONTINUE
64 ¢
65 C << Parameters for calculations >>>>>>>>>>>>>>3>>>>>>>>>>>>>>35>>>>>>>>
66 C
67 E_MINO=1.0D10 ! Eigenvalue lower bound of original matrix
68 E_MAX0=-1.0D10 ! Eigenvalue upper bound of original matrix

Fig. 4.3. Fortran source code for calculation of the eigenvalue and eigenvector of the matrix defined by Eq. (4.20). The
leftmost number of each line is labeled for convenience to explain the program.
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DO 200 I=1,NN1 ! Gerschgorin’s theorem
R1=A(I) -ABS(B(I))-ABS(B(I-1))-ABS(C(I))-ABS(C(I-L))
R2=A(I) +ABS(B(I))+ABS(B(I-1))+ABS(C(I))+ABS(C(I-L))
IF(R1.LT.E_MINO) E_MINO=R1
IF(R2.GT.E_MAX0) E_MAX0=R2
200 CONTINUE

C
EO=-E_MINO ! Eigenvalue shift
E_MIN=E_MINO+EO ! Lower bound of modified matrix
E_MAX=E_MAXO0+EO ! Upper bound of modified matrix
DEL_E=E_MAX-E_MIN ! Auxiliary parameter
AVE_E=E_MAX+E_MIN ! Auxiliary parameter
MU=SQRT (E+EQ) ! Frequency of external force
MU_MAX=SQRT(E_MAX) ! Freq. corresponding to E_MAX
MU_MIN=SQRT(E_MIN) ! Freq. corresponding to E_MIN
SD_MU=TWO*MU*SD ! SD at frequency MU
DEL_MU=0NE/ (NN1*SD_MU) ! Eigenfrequency spacing
T0=0.5D0*PI/DEL_MU ! Initial time interval
TS=1.1DO*PI/MU ! Supplemental time interval
TDIV=TS/NTS ! Time step in TS
NPL=MAX(10,INT(CHI*TO*(MU_MAX-MU_MIN))) ! Order of T_p for T
NPS=MAX (10, INT(CHI*TDIV*(MU_MAX-MU_MIN)))! Order of T_p for TDIV
NPL=2%* (INT(LOG(DBLE(NPL+1))/L0G(2.0D0))+1) ! NPL --> NPL=2%%NL
NPS=2% (INT(LOG(DBLE(NPS+1))/L0G(2.0D0))+1) ! NPS --> NPS=2%xNS

C

C << Reforming matrix to one with positive eigenvalues >>>>>>>>>>>>>>>>

C
DO 210 I=1,NN1

A(I)=A(I)+EO0 ! Shifted value of matrix element A
210 CONTINUE
C

C << Reforming matrix for Chebyshev expansion >>>>>>>>>>>>>>>>>>>>>>>>>
C
D_EINV=0ONE/DEL_E
DO 220 I=1,NN1
A1(I)=(TWO*A(I)-AVE_E)*D_EINV
B1(I)= TWO*B(I)*D_EINV
C1(I)= TWO*C(I)*D_EINV
220 CONTINUE
C
C << Definition of external force >>>>>>>>>>>>>>>>>5>>>>3>5>>>>>>>>>>>>>
C
DO 300 I=1,NN1
CALL RANDOM(IX,R)
RND=TWO*PI*R

F(I)=FEXT*COS(RND) ! External force
300 CONTINUE
C
C << Coefficients of Chebyshev expansion >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
C
CALL COEF_L(MU,TO,NPL,NPLMAX,E_MAX,E_MIN,CONV,COEF_LF,COEF_LFD)
CALL COEF_S(MU,TDIV,NPS,NPSMAX,E_MAX,E_MIN,CONV,
& COEF_SX,COEF_SXD, COEF_SZ,COEF_SF,COEF_SFD)
C
C << Iteration for Forced Oscillator Method >>>>>>>>>>>>>>>>>>>>>>>>>>>
C
D_MINV=0NE/DEL_MU
DO 1000 IIT=1,NIT_MAX ! Iteration loop
DO 400 I=-L+1,N3 ! Initialization
X(I)=ZERO ! Displacement at t
Z(I)=ZERO ! Velocity at t
400 CONTINUE
C

C Long time evolution
CALL FEM_L(At,B1,Ci,F,X,Z,L,N,N3,NPL,NPLMAX,
& COEF_LF,COEF_LFD,F0,F1,F2)
C
C Purity evaluation
GAMMAO=ZERO
GAMMA2=ZERQ
GAMMA4=ZERO
DO 500 I=1,NN1
AT=A(I)*X(1)+

Fig. 4.3. Continued.
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500

C Sh

& B(I)*X(I+1)+B(I-1)*X(I-1)+
& C(I)*X(I+L)+C(I-L)*X(I-L)
BI=X(I)

GAMMAO=GAMMAO+BI*BI

GAMMA2=GAMMA2+AI*BI

GAMMA4=GAMMA4+ATI*AI
CONTINUE
DELTA1=SQRT (ABS (ONE-GAMMA2*GAMMA2/ (GAMMA4*GAMMAO) ) )
EIGN_MU1=SQRT(ABS(GAMMA2/GAMMAQ))
DELTA2=DELTA1%1.01D0
EIGN_MU2=EIGN_MU1

DO 600 ITS=1,NTS ! Supplemental time interval loop

ort time evolution

CALL FEM_S(A1,B1,C1,F,X,Z,L,N,N3,NPS,NPSMAX,
& COEF _SX,COEF_SXD,COEF _SZ,COEF_SF,COEF_SFD,
& X0,X1,X2,20,21,22,F0,F1,F2)

C Purity evaluation

610

600

700

800

810
1000
C
C <«
C
2000

900

91

o

5100
5200
5300

GAMMAO=ZERO

GAMMA2=ZERO

GAMMA4=ZERO

D0 610 I=1,NNi
AI=A(I)*X(I)+

& B(I)*X(I+1)+B(I-1)*X(I-1)+
& C(I)*X(I+L)+C(I-L)*X(I-L)
BI=X(I)

GAMMAO=GAMMAO+BI*BI
GAMMA2=GAMMA2+AI*BI
GAMMA4=GAMMA4+AT*AI
CONTINUE
DELTA3=SQRT (ABS (ONE-GAMMA2*GAMMA2/ (GAMMA4*GAMMAO) ) )
EIGN_MU3=SQRT(ABS (GAMMA2/GAMMAO) )
IF(DELTA1.GT.DELTA2.AND.DELTA3.GT.DELTA2) GOTO 700
DELTA1=DELTA2
DELTA2=DELTA3
EIGN_MU1=EIGN_MU2
EIGN_MU2=EIGN_MU3
CONTINUE ! End of supplemental time interval

RATI0=0.5DO*EIGN_MU2*DELTA2%D_MINV ! A2/A1
vwrite(6,5100) iit,ratio
IF(RATIO.LT.PURITY) GOTO 2000
X_MAX=ZERO
DO 800 I=1,NN1
IF(X_MAX.LT.ABS(X(I))) X_MAX=X(I) ! Rescale X1
CONTINUE
X_MINV=FEXT/X_MAX
DO 810 I=1,NN1
F(I)=X(I)*X_MINV ! Ext. force iteration
CONTINUE
CONTINUE ! End of iteration

Output >>3>3>33333>55333555533553555555555355555535555555555555555>>

WRITE(6,5200) RATIO,EIGN_MU2+EIGN_MU2-EQ
V_NOR=ZERO
DO 900 I=1,NN1
V_NOR=V_NOR+X(I)*X(I) ! Normalization
CONTINUE
SQVINV=ONE/SQRT(V_NOR)
OPEN(10,FILE=FILENAME)
DO 910 I=1,NNi
WRITE(10,5300) I,X(I)*SQVINV
CONTINUE
CLOSE (10)
FORMAT("Number of Iterations=",613,4X,"A2/A1=",D19.14)

FORMAT("a2/a1=",D19.14,4X,"Eigenvalue=",D19.14)
FORMAT(16,3X,D19.14)

STOP

END

Fig. 4.3. Continued.
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4.4.3. Time evolution routine

The time evolution based on the FEM is separated from the main program as subroutines. The
time evolution routine consists of two subroutines. One (COEF_L or COEF-S) is for the calcu-
lation of coefficients of the Chebyshev expansion and the other (FEM_L or FEM_S) gives x(t) and
z(t) from these coefficients. The subroutines COEF_L and FEM_L are provided for a time evolution
starting with the initial conditions of x(0) = 0 and z(0) = 0, while COEF_S and FEM_S are for
x(0) # 0 and z(0) # 0. (Indices L and S stand for long and short time intervals, respectively.) Since
the latter set of subroutines includes the former one as a special case, we explain only the
subroutines COEF_S and FEM_S (Figs. 4.4-4.9).

The subroutine COEF_S to calculate the Chebyshev expansion coefficients is shown in Fig. 4.4.
Variables COEF_SX, COEF_SZ, COEF_SF, COEF_SXD, and COEF_SFD correspond to a,(t),
b,(t), c,(t), a,(t), and ¢,(t) given by Egs. (3.19)-(3.21), (3.24), and (3.26), respectively. These coeffi-
cients are computed by the FFT. Transformed functions are calculated in lines 22-33. The quantity
¢, defined by Eq. (3.22) is given in the line 23 (XIQ). Trigonometric calculations in lines 16-21 and
30-32 are the trick for fast computations of trigonometric functions. This trick is based on the
recurrence [1],

cos(0 + @) = cos — ocos — Bsin0 ,

sin(0 + @) = sin0 — asin0 + fcosb, (4.26)
where

2=2 sin2<%> (4.27)
and

p=sing. (4.28)

The Fourier transform of these functions are performed by the subroutine FF'T (lines 34-38). The
subroutine FFT is not a standard FFT routine, but provides the Fourier transform given by
Eq. (3.29). The program list of FF'T is presented in Fig. 4.8, which is essentially the same with the
program given in Ref. [1]. According to Egs. (3.19)-(3.21) and (3.24)—(3.26), we obtain the final
results for the Chebyshev expansion coefficients by multiplying these Fourier transforms by
2/(1 + 6,0)P (lines 39-55). The actually required order of the Chebyshev expansion [the cutoff
parameter P in Eq. (3.15) or (3.23)] is determined in lines 52-54. The convergence criterion
(tolerance) CONV is given in the line 28 of Fig. 4.2 or the line 36 of Fig. 4.3.

The subroutine FEM_S is shown in Fig. 4.6. In this subroutine, we calculate x(¢) and z(t) by
Egs. (3.15) and (3.23), respectively. Products between the Chebyshev polynomial of the matrix and
a vector are calculated by using the recurrence formula Eq. (3.28). Arrays X0, X1, and X2 provide
three terms x,_ 1, x,,, and x,, . ; in Eq. (3.28), respectively. Other arrays (ZO, FO, ...) present similar
variables (z,- 1, f,—1,...). Eq. (3.28a) is calculated in lines 29-42, while Eq. (3.28b) is evaluated in
lines 52-71. Summations in Eqgs. (3.15) and (3.23) for p = 0 and 1 are performed in lines 43-50. The
rest of the summations is done in lines 72-79. The most time-consuming part which governs the
efficiency of the total program lies in lines 54-62 and 73-78. The computing time of this part is
proportional to NP.
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1 SUBROUTINE COEF_S(MU,T,NP,NPMAX,E_MAX,E_MIN,CONV,
2 3 COEF_SX,COEF_SXD,COEF_SZ,COEF_SF,COEF_SFD)
3 C

4 IMPLICIT REAL*8 (A-H,0-Z)

5 REAL*8 MU

6 DIMENSION COEF_SX(NPMAX),COEF_SXD(NPMAX)

7 DIMENSION COEF_SZ(NPMAX)

8 DIMENSION COEF_SF(NPMAX),COEF_SFD(NPMAX)

9 c

10 DATA ONE /1.0D0/

11 DATA TWO /2.0D0/

12 DATA PI  /3.141592653589793D0/

13 c

14 DEL_E=E_MAX-E_MIN

15 AVE_E=E_MAX+E_MIN

16 ALPHA=-TWO*(SIN(0.5DO*PI/NP))**2

17 BETA=SIN(PI/NP)

18 €0SQ=C0S(0.5D0*PI/NP)

19 SINQ=SIN(0.5DO*PI/NP)

20 COSMUT=COS (MU*T)

21 SINMUT=SIN (MU*T)

22 DO 100 IP=1,NP

23 XIQ=SQRT(DEL_E*((AVE_E/DEL_E)+C0SQ)*0.5D0)
24 DENOM=XIQ*XIQ-MU*MU

25 COEF_SX(IP)=COS(XIQ*T)

26 COEF_SZ(IP)=SIN(XIQ*T)/XIQ

27 COEF _SF (IP)=(COSMUT-COEF_SX(IP))/DENOM

28 COEF _SXD(IP)=-XIQ*XIQ*COEF_SZ(IP)

29 COEF_SFD(IP)=(~-COEF_SXD(IP)-MU*SINMUT)/DENOM
30 €0SQ_TMP=C0SQ

31 C0SQ=COSQ+ALPHA*COSQ-BETA*SINQ

32 SINQ=SINQ+ALPHA*SINQ+BETA*COSQ_TMP

33 100 CONTINUE

34 CALL FFT(COEF_SX,NP)

35 CALL FFT(COEF_SZ,NP)

36 CALL FFT(COEF_SF,NP)

37 CALL FFT(COEF_SXD,NP)

38 CALL FFT(COEF_SFD,NP)

39 FACT1=0NE/NP

40 FACT2=TWO/NP

41 DO 110 IP=1,NP

42 IF(IP.EQ.1) THEN

43 FACT=FACT1

44 ELSE

45 FACT=FACT2

46 END IF

47 COEF _SX (IP)=FACT*COEF _SX(IP)
48 COEF_SZ(IP)=FACT*COEF_SZ(IP)
49 COEF _SF (IP)=FACT*COEF _SF(IP)

50 COEF_SXD(IP)=FACT*COEF_SXD(IP)
51 COEF _SFD(IP)=FACT*COEF_SFD(IP)
52 IF (MAX (ABS(COEF_SX(IP)),ABS(COEF_SZ(IP)),ABS(COEF_SF(IP))
53 & ,ABS(COEF_SXD(IP)),ABS(COEF_SFD(IP)))
54 & .LT.CONV) GOTO 200
55 110 CONTINUE
56 C
57 200 NP=IP
58 c
59 RETURN
60 END

Fig. 4.4. The program list of the subroutine COEF_S.
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1 SUBROUTINE COEF_L(MU,T,NP,NPMAX,E_MAX,E_MIN,CONV,
2 & COEF_LF,COEF_LFD)
3 C
4 IMPLICIT REAL*8 (A-H,0-2)
5 REAL*8 MU
6 DIMENSION COEF_LF(NPMAX),COEF_LFD(NPMAX)
7 C
8 DATA ONE /1.0DO/
9 DATA TWO /2.0D0/
10 DATA PI  /3.141592653589793D0/
11 C
12 DEL_E=E_MAX-E_MIN
13 AVE_E=E_MAX+E_MIN
14 ALPHA=-TWO* (SIN(O.5DO*PI/NP))**2
15 BETA=SIN(PI/NP)
16 €0SQ=C0S(0.5D0*PI/NP)
17 SINQ=SIN(0.5DO*PI/NP)
18 COSMUT=COS (MU*T)
19 SINMUT=SIN(MU*T)
20 C
21 DO 100 IP=1,NP
22 XIQ=SQRT(DEL_E*((AVE_E/DEL_E)+C0SQ)*C.5D0)
23 DENOM=XIQ*XIQ-MU*MU
24 COEF_LF (IP)=(COSMUT-COS(XIQ*T))/DENOM
25 COEF_LFD(IP)=(XIQ*SIN(XIQ*T)-MU*SINMUT)/DENOM
26 C0SQ_TMP=C0SQ
27 COSQ=COSQ+ALPHA*COSQ-BETA*SINQ
28 SINQ=SINQ+ALPHA*SINQ+BETA*COSQ_TMP
29 100 CONTINUE
30 CALL FFT(COEF_LF,NP)
31 CALL FFT(COEF_LFD,NP)
32 FACT1=0NE/NP
33 FACT2=TWO/NP
34 DO 110 IP=1,NP
35 IF(IP.EQ.1) THEN
36 FACT=FACT1
37 ELSE
38 FACT=FACT2
39 END IF
40 COEF_LF (IP)=FACT*COEF _LF (IP)
41 COEF_LFD(IP)=FACT*COEF_LFD(IP)
42 IF(MAX(ABS(COEF_LF(IP)),ABS(COEF_LFD(IP))).LT.CONV) GOTO 200
43 110 CONTINUE
44 C
45 200 NP=IP
46 C
47 RETURN
48 END

Fig. 4.5. The program list of the subroutine COEF_L.

5. Computing linear response functions for classical systems

The purpose of this section is to show how to compute linear response functions for classical
systems in the context of the FOM. The facets of the FOM we have developed in previous sections
can be combined into a new scheme for computing linear response functions. In Sections 5-7, we
use the symbol w instead of u, because it represents an actual frequency of a physical system. The
FOM makes it possible to compute directly S(g, w) for physical systems described by very large
matrices, in particular, without performing the Fourier transform of the spatio-temporal correla-
tion function S(r,t) [29]. This scheme is an efficient O(N) method and quite different from those
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SUBROUTINE FEM_S(A,B,C,F,X,Z,L,N,N3,NP,NPMAX,

z COEF_SX,COEF_SXD,COEF_SZ, COEF_SF,COEF_SFD,
& X0,X1,X2,20,21,22,F0,F1,F2)
c
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(N),B(0:N),C(-L+1:N)
DIMENSION X(-L+1:N3),Z(-L+1:N3),F(-L+1:N3)
DIMENSION XO(-L+1:N3),X1(-L+1:N3),X2(-L+1:N3)
DIMENSION ZO(-L+1:N3),Z1(-L+1:N3),Z2(-L+1:N3)
DIMENSION FO(-L+1:N3),F1(-L+1:N3),F2(~L+1:N3)
DIMENSION COEF_SX(NPMAX),COEF_SXD(NPMAX)
DIMENSION COEF_SZ(NPMAX)
DIMENSION COEF_SF(NPMAX),COEF_SFD(NPMAX)
c
DATA ZERO /0.0DO/
DATA TWO /2.0D0/
c
DO 100 I=-L+1,N3 ! Initialization
'X0(I)=ZERD ! T_{n-2}(D)*X
X1(I)=ZERO ! T_{n-1}(D)*X
X2(I)=ZERO ' T_{n} (D)*X
Z0(I)=ZERO ! T_{n-2}(D)*Z
Z1(I)=ZERO ' T_{n-1}(D)*Z
Z2(I)=ZERO ! T_{n} (D)*Z
FO(I)=ZERO ! T_{n-2}(D)*F
F1(I)=ZERO ! T_{n-1}(D)*F
F2(I)=ZERO ' T_{n} (D)xF
100 CONTINUE
DO 110 I=1,N
X0(I)=X(I)
Z0(I)=Z(I)
FO(I)=F(I)
X1(I)=A(I)*X(I)+
& B(I)*X(I+1)+B(I-1)*X(I-1)+
& C(I)*X(I+L)+C(I-L)*X(I-L)
Z1(I)=A(I)*Z(I)+
& B(I)*Z(I+1)+B(I-1)*Z(I-1)+
& C(I)*Z(I+L)+C(I-L)*Z(I-L)
F1(I)=A(I)*F(I)+
& B(I)*F(I+1)+B(I-1)*F(I-1)+
& C(I)*F(I+L)+C(I-L)*F(I-L)
110 CONTINUE
DO 120 I=1,N
X(I)=COEF_SX(1) *XO0(I)+COEF_SX(2) *X1(I)+
& COEF_SZ(1) *Z0(I)+COEF_SZ(2) *Z1(I)+
& COEF_SF(1) *FO(I)+COEF_SF(2) *F1(I)
Z(I)=COEF_SXD(1)*X0(I)+COEF_SXD(2)*X1(I)+
& COEF_SX(1) *ZO(I)+COEF_SX(2) *Z1(I)+
& COEF_SFD(1)*F0(I)+COEF_SFD(2)*F1(I)
120 CONTINUE
c
DO 200 IP=3,NP
DO 210 I=1,N
X2(I)=TWO*(A(I)*X1(I)+
& B(I)*X1(I+1)+B(I-1)*X1(I-1)+
& C(I)*X1(I+L)+C(I-L)*X1(I-L))-X0(I)
Z2(I)=TWO*(A(I)*Z1(I)+
& B(I)*Z1(I+1)+B(I-1)*Z1(I-1)+
& C(I)*Z1(I+L)+C(I-L)*Z1(I-L))-20(I)
F2(I)=TWO*(A(I)*F1(I)+
& B(I)*F1(I+1)+B(I-1)*F1(I-1)+
& C(I)*F1(I+L)+C(I-L)*F1(I-L))-F0(I)
210 CONTINUE
DO 220 I=1,N

X0(I)=X1(I)
X1(I)=X2(I)
Z0(1)=21(I)

Fig. 4.6. The program list of the subroutine FEM_S.
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68 Z1(1)=22(1)

69 FO(I)=F1(I)

70 F1(I)=F2(I)

71 220 CONTINUE

72 DO 230 I=1,N

73 X(I)=X(I)+COEF_SX(IP) *X2(I)+
74 & COEF_SZ(IP) *Z2(I)+
75 & COEF_SF(IP) *F2(I)
76 Z(I)=Z(I)+COEF_SXD(IP)*X2(I)+
77 & COEF_SX(IP) *Z2(I)+
78 & COEF_SFD(IP)*F2(I)
79 230 CONTINUE

80 200 CONTINUE

81 c

82 RETURN

83 END

Fig. 4.6. Continued.

1 SUBROUTINE FEM_L(A,B,C,F,X,Z,L,N,N3,NP,NPMAX,
2 & COEF_LF,COEF_LFD,F0,F1,F2)
3 c
4 IMPLICIT REAL*8 (A-H,0-Z)
5 DIMENSION A(N),B(0:N),C(-L+1:N)
6 DIMENSION X(-L+1:N3),Z(-L+1:N3),F(-L+1:N3)
7 DIMENSION FO(-L+1:N3),F1(-L+1:N3),F2(-L+1:N3)
8 DIMENSION COEF_LF(NPMAX),COEF_LFD(NPMAX)
9 c
10 DATA ZERO /0.0DO/
11 DATA TWO /2.0D0/
12 c
13 DO 100 I=-L+1,N3 ! Initialization
14 FO(I)=ZERO t T_{n-2}(D)*F
15 F1(I)=ZERO ! T_{n-1}(D)*F
16 F2(I)=ZERO ' T_{n} (D)*F
17 100 CONTINUE
18 DO 110 I=1,N
19 FO(I)=F(I)
20 F1(I)=A(I)*F(I)+
21 & B(I)*F(I+1)+B(I-1)*F(I-1)+
22 & C(I)*F(I+L)+C(I-L)*F(I-L)
23 110 CONTINUE
24 DO 120 I=1,N
25 X(I)=COEF_LF(1) *FO(I)+COEF_LF(2) *F1(I)
26 Z(1)=COEF_LFD(1)*F0(I)+COEF_LFD(2)*F1(I)
27 120 CONTINUE
28 c
29 DO 200 IP=3,NP
30 DO 210 I=1,N
31 F2(I)=TWO*(A(I)*F1(I)+
32 & B(I)*F1(I+1)+B(I-1)*F1(I-1)+
33 & C(I)*F1(I+L)+C(I-L)*F1(I-L))-FO(I)
34 210 CONTINUE
35 DO 220 I=1,N
36 FO(I)=F1(I)
37 F1(I)=F2(I)
38 220 CONTINUE
39 DO 230 I=1,N
40 X(I)=X(I)+COEF_LF(IP) *F2(I)
41 Z(1)=Z(I)+COEF_LFD(IP)*F2(I)
42 230 CONTINUE
43 200 CONTINUE
44 c
45 RETURN
46 END

Fig. 4.7. The program list of the subroutine FEM_L.
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SUBROUTINE FFT(Y,N)

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y(N)
PI=3.141592653589793D0
C1=0.5D0

C2=-0.5D0

J=1

MMAX=2

N2P3=N+3

THETA=0.5D0*PI/N
WR=COS(THETA)
WI=SIN(THETA)
WPRO=-2.0D0*WI**2
WPIO=SIN(2.0DO*THETA)
DO 100 I=1,N/2
Y1=0.5D0* (Y(I)+Y(N-I+1))
Y2=WI*(Y(I)-Y(N-I+1))
Y(I)=Y1+Y2
Y(N-I+1)=Y1-Y2
WTEMP=WR
WR=WR*WPRO-WI*WPIO+WR
WI=WI*WPRO+WTEMP*WPIO+WI

100 CONTINUE

c

120

110
130

150

140

DO 110 I=1,N,2

IF(J.GT.I) THEN
TEMPR=Y(J)
TEMPI=Y(J+1)
Y(J)=Y(I)
Y(J+1)=Y(I+1)
Y(I)=TEMPR
Y(I+1)=TEMPI

ENDIF

M=N/2

IF((M.GE.2) .AND.(J.GT.M)) THEN

J=J-M
M=M/2
GOTO 120
ENDIF
J=J+M
CONTINUE
IF(N.GT.MMAX) THEN
ISTEP=2*MMAX
THETA=2.D0*PI/(MMAX)
WPR=-2.D0*SIN(0.5DO*THETA) **2
WPI=SIN(THETA)
WR=1.DO
WI=0.DO
DO 140 M=1,MMAX,2
DO 150 I=M,N,ISTEP
J=I+MMAX
TEMPR=WR*Y (J) -WI*Y(J+1)
TEMPI=WR*Y(J+1)+WI*Y(J)
Y(J)=Y(I)-TEMPR
Y(J+1)=Y(I+1)-TEMPI
Y(I)=Y(I)+TEMPR
Y(I+1)=Y(I+1)+TEMPI
CONTINUE
WTEMP=WR
WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI
CONTINUE
MMAX=ISTEP
GOTO 130
ENDIF

68
69

200

300

310

THETA=PI/DBLE(N/2)

WPR=-2.DO*SIN(0.5DOXTHETA) **2

WPI=SIN(THETA)

WR=1.DO+WPR

WI=WPI

DO 200 I=2,N/4
I11=2%I-1
12=I1+1
13=N2P3-12
14=13+1
HiR=C1*(Y(I1)+Y(I3))
H1I=C1*(Y(I2)-Y(I4))
H2R=-C2* (Y(I2)+Y(I4))
H2I=C2* (Y(I1)-Y(I3))
Y(I1)=H1R+WR*H2R-WI*H2I
Y(I2)=H1I+WR¥H2I+WI*H2R
Y(I3)=H1R-WR*H2R+WI*H2I
Y(I14)=-H1I+WR*H2I+WI*H2R
WTEMP=WR
WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI

CONTINUE

H1R=Y(1)

Y(1)=H1R+Y(2)

Y(2)=H1R-Y(2)

WR=1.0D0

WI=0.0DO

DO 300 I=3,N,2
WTEMP=WR
WR=WR*WPRO-WI*WPIO+WR
WI=WI*WPRO+WTEMP*WPIO+WI
Y1=Y(I)*WR-Y(I+1)*WI
Y2=Y(I+1)*WR+Y (I)*WI
Y(I)=Y1
Y(I+1)=Y2

CONTINUE

SUM=0.5D0*Y(2)

DO 310 I=N,2,-2
SUM1=SUM
SUM=SUM+Y(I)
Y(I)=SUM1

CONTINUE

RETURN

END

Fig. 4.8. The program list of the subroutine FFT.
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SUBROUTINE RANDOM(IX,RND)

REAL*8 RND
IR=48828125
MR=2147483647
IX=IX*IR
IF(IX) 10,20,20
10 IX=IX+MR+1
20 RND=DFLOAT(IX)/DFLOAT(MR)
RETURN
END

H O WO NS WN -

-

Fig. 4.9. The program list of the subroutine RANDOM. This subroutine generates random numbers distributed
uniformly in the range [0, 1].

using direct diagonalization techniques. The simplicity and versatility of the FOM make it very
efficient, and its flexibility allows for wide applications in physical problems.

5.1. Dynamic structure factor S(q, )

The dynamic structure factor is defined, in general, by [30-32]

S(q,e) = (n + 1)1"(q, ¢

2

=(n+ )n) e —¢;) , (5.1)

Y e e, (7)

where the prefactor (n + 1) comes from the Bose distribution which is expressed by 1/(1 — e~ #?)
with f = 1/kg T, R,, the position vector of the site m, respectively. The explicit form of Eq. (5.1) is
given by

S(g.e) = (n + Dn) d(e — 81)[{2 cos(q 'Rm)em(i)} ’ + {Z sin(g -Rm)em(},)} 2} ) (5.2)

The above definition of S(q,¢) can be related to the energy function introduced in Eq. (2.12). The
energy function of Eq. (2.12) is expressed by

sin®{(w,; — Q)t/2}

EQ,1) = Z{Z Fruenl } o —ar (5.3)

Setting the external force in Eq. (5.3) as
F,, = Fycos(q-R,,) (5.4)
we have the energy function E(T, Q) of the form after a sufficient time interval T,

TF
EYQ,T) = 20

Z Mw, — Q){Z cos(q-Rm)em(/I)} i ) (5.5)
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The driving time-interval T should be chosen in the same way as the calculation of the spectral
density. By setting the external force again as

Fm = FO Sin(q'Rm) ’ (56)
Eq. (5.3) yields

. nTF3 . 2
E}(Q,T) = , Y 0w, — Q)Y sin(g Ry)en(A) - (5.7)
A m
Combining Egs. (5.2), (5.5) and (5.7), the dynamic structure factor S(g, ¢) is given by
.5 = 0+ D22t Eeo(o) T) + Ey(ote). T} (58
q.¢) =(n & |TF2 ((e), 2(o(e), . .

This scheme makes it possible to calculate efficiently the ¢ dependence of S(g, ¢). It is remarkable
that this scheme requires the same computing time as that required for the spectral density, namely
proportional to N as mentioned in Section 4.2.

It is straightforward to extend this algorithm to cases with vector displacements. For example,
the dynamic structure factor of vibrational systems is defined by the formula

n+1) 2

S(g, w) = Z w — w, Z {q e (A)e ™| | (5.9)

where e,,(/) is the vector displacement of the vibrational eigenmode 4 at the mth site. Using this
formula, one can calculate the frequency w and wavenumber ¢ dependencies of S(g, w) by setting as,
instead of Egs. (5.4) and (5.6),

F,, =qFycos(q-R,) (5.10)
and

F, =qF,sin(q-R,) . (5.11)

5.2. Computing S(q,®) for random fractals

We demonstrate the efficiency of this scheme by showing the calculated results of the dynamic
structure factor for fracton dynamics on three-dimensional (3D) bond-percolating networks.
Percolating networks [33,34] exhibit self-similar fractal geometry [35] with various physical
implications [36-38], and also provide models of real fractal materials such as silica aerogels
[39,40], sol-gel glasses [41], or colloids. It has been pointed out that vibrational excitations
peculiar to fractal structures can be characterized by the fractal and fracton dimensionalities,
D; and d, respectively [42]. The excitations belonging to this class are called fractons [42].
Computer simulations have played an essential role for investigating fracton dynamics [43]. The
dynamic structure factor provides important information on dynamic properties of percolating
networks.
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(@) (b)

Fig. 5.1. (a) Site-percolating network and (b) bond-percolating network at the critical probabilities p..

We briefly introduce the essential points on dynamics of percolating networks [43]. To construct
site-percolating networks, each intersection of a d-dimensional lattice is occupied by a particle at
random with probability p. Bonds are said to be connected if particles are adjacent along
a principal direction (see the illustration given in Fig. 5.1). In a bond-percolating network, all sites
are initially occupied and bonds are randomly occupied with the probability p. A critical probabil-
ity p. exists such that, for p > p., a connected cluster will infinitely extend across the lattice, referred
to as an infinite cluster. On the other hand, the remainder of occupied sites or bonds will form finite
clusters. The probability that a site or bond belongs to the infinite cluster, P(p), is characterized by
the exponent f through the scaling formula [33],

P(p) oc (p — po)’ . (5.12)

There exists a unique length scale &(p) in a percolating network which determines the crossover
from homogeneous to fractal structures. This quantity is usually termed the percolation correlation
length. For L > &(p), the percolating network appears homogeneous, and the mass density p does
not depend on L. The percolating network exhibits fractal geometry for L < &(p) since the occupied
mass density scales as Eq. (5.12). The correlation length &(p) scales as

<p) = Eolp —pel ™" . (5.13)

Thus, the network is fractal at short length scales, and Euclidean at long length scales.

It is known that the master equation for diffusion can be mapped onto a variety of physical
systems [44], including elastic vibrations, spin waves in Heisenberg ferromagnets, and electrical
RC circuits. This allows the vibrational problem to be mapped onto the diffusion problem. In
homogeneous systems, the mean-square displacement of a random walker, (R?(t)), is proportional
to time ¢,

(R¥1)y oct (5.14)
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for any Euclidean dimension d. In percolating systems, the diffusion on a length scale L < &(p) is
anomalous. The mean-square displacement becomes [45]

(R3(t)) oc 21270 (5.15)

with 0 = (u — f)/v, where u is called the conductivity exponent defined by a(p) oc (p — p.)*. Since
0 > 0, the diffusion slows down reflecting the hierarchically intricate structure of percolating
networks. Eq. (5.15) holds also for the relationship between a wavelength A(w) and frequency o due
to the mapping relationship between the diffusion equation and the vibrational equation, which is
given by w oc A(w)* with a =1 + (4 — f)/2v. Thus, one can consider Eq. (5.15) as the dispersion
relation for elastic waves.

The equations of vibrational motion with scalar displacements on a percolating network driven
by an external force with frequency Q is

2
dd% =Y Dy, + Fycos(Q1) , (5.16)
where x,,(t) is the displacement at the mth site, D,,, is the force constant between atoms m and n,
and the mass of atoms is unity. In the percolating network model, D,,, = — 1 if the mth atom is
connected to the nth atom which is one of the nearest neighbors of the mth atom, the diagonal
element D,,, = —) , Dy, and D,,, = 0 otherwise.

The dynamic structure factor S(q, w) for the percolating network calculated by the FOM is
shown in Fig. 5.2. The percolating network is formed on a 120 x 120 x 120 cubic lattice at the
percolation concentration p = 0.31 (the critical concentration p. is 0.249). The number of sites
is 1.7 x 10°. S(q, w) for five different ¢ along the [100] direction is plotted as a function of w. The
solid lines are only guides to the eye and the Bose factor is reduced. For small wave vector

S(q,w) (arb. units)

120x120x120
40 g/[100]
p=0.31
+ 20
0.2 0.4 0.6
+ w
\":':“‘- 0.52
9 N‘.‘ $eecees 0.79
0. w“""coo". 1.05
$% 00 *
Titeseess 13y

q

Fig. 5.2. o dependence of the dynamical structure factor S(g, ) of the 3D bond-percolating network at p = 0.31 formed
on a 120 x 120 x 120 cubic lattice. From Ref. [29].
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q( = |q| < &™), sharp peaks appear in the low-frequency region. With increasing g, peak positions
shift to the higher-frequency region beyond w, ~ 0.07, and the widths (t ™ !) of the peaks increase
very rapidly. This indicates that the linewidth of fracton is very broad, originating from the
Ioffe-Regel strong scattering limit (! & w). These convincing results have been the first verifica-
tion of the validity of the single-length-postulate [46] for percolating systems by computer
simulations.

5.3. Raman scattering intensity

The inelastic light scattering intensity such as the Raman scattering intensity presents rich
information of dynamical properties of materials as well as the dynamic structure factor S(q, w).
Most of numerical studies on the Raman scattering intensity have been done by using direct
diagonalization techniques [47-50] or the moment method [51] which consume a large amount of
memory size. This results in a limited number of particles of the system, which causes sample-
dependence or finite-size effects in the results. Due to this difficulty, no clear evidence had been
given on the frequency dependence of the Raman scattering intensity for random systems.

The Raman scattering intensity for large sizes can be calculated by the FOM similar to the case
of S(¢,w) with a computational effort linear in the matrix size N [29]. Taking into account the
vector nature of the displacements of particles, the equation of motion with an external force
applied to each site is given by

dla

=Y D xk(t) + FZ% cos(Qt) , (5.17)
dt2
b

where xj,(t) is the displacement of the mth atom (mass is unity) with the Cartesian component a,
D#, the force constant between the mth and the nth atoms, and F? the amplitude of the external
force on the mth site in the « direction.

The energy function E(£,t) given by Eq. (2.12) should be read by taking account of the
o component of F% and ef,(4) instead of F,, and e, (1), where e,(4) is the o component of the
eigenvector. After a sufficiently large time interval T, E(Q2, T') becomes

EQ.T) = —z 3(Q — w,) {2 F:,;e:;(z)}z , (5.18)

where w, is the eigenfrequency of the mode A. The r.h.s. of Eq. (5.18) is related to the definition of
the Raman-scattering intensity I,;(w) which is defined by

1
Ly = fdte‘wtzw K20 (519)

where < --- ) is the thermal average N the number of sites, and u2f(t) the polarizability at the site m.
Expanding the polarizability u?(t) in terms of small displacements x%(t), one has

h 2
L) = 3 LY o — 0 S ) (5:20

m,y
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where (n + 1) is the Bose factor, and /27 = ¥ 0u2f /ox;. We have neglected the contribution from
elastic scattering.

As an example, we consider the dipole-induced-dipole (DID) mechanism. In this case, one can
express f,2#7 in Eq. (5.20) by using the derivative of the dipole propagator as [47,49,50,52]

5aﬂry + 5ﬁyr(x + 5Vdrﬁ + lsrargry:| , (521)
r

frfiﬁy = Z ﬂm.an|: - 3 VS
where r, is defined as r, = R,, — R, = (y,7y,7.), ' = |Fpy|, and [i,, the bare polarizability of the
site m. The bare polarizability at each site is taken to be isotropic. Using Egs. (5.18) and (5.20), the
Raman-scattering intensity is expressed as

h {(n+1)4E,(w,T)
2N? o nT ’

where the amplitude of the periodic force {FZ } in Eq. (5.18) is taken to be f;z*”. This method enables
us to calculate Eq. (5.19) with arbitrary resolution of frequency déw by choosing the proper time
interval T = 4n/dw. Thus, we can calculate the Raman scattering intensity of complex systems
through minor modifications of the scheme for calculating the dynamic structure factor S(g, w). We
omit to present examples of calculated results of the Raman scattering intensity since the procedure
is completely the same as the case of the dynamic structure factor in the previous subsection, which
requires the same computing time as that for calculating the density of states (namely scaling
linearly with the system size N). See Ref. [29] in which details of calculated results are given. The
results are completely in agreement with the scaling theory [46].

Ls(w) = (5.22)

6. Computing linear response functions for quantum systems

Linear response functions are very significant for gaining insight into dynamic properties of
quantum systems. Calculations of linear response functions for quantum systems described by
N x N Hamiltonian matrices normally require the evaluation of all eigenvalues and corresponding
eigenvectors. However, as the size N of matrices becomes large, standard diagonalization routines
need a large amount of the computing time scaling with N* as well as memory space proportional
to N2. They remain limited to systems of modest size because of the high computational cost.

The development of an efficient algorithm for linear response functions of quantum systems is
quite challenging. So far, many algorithms suitable for the calculation of linear response functions
such as the Kubo-Greenwood formula [ 53,54] for the AC conductivity have been proposed. These
include the methods based on the continued fraction technique [55], the recursion method
[56,57,155], the moments method [59], the full-diagonalization technique using the Lanczos
method [4], the maximum entropy method [60-62], the Chebyshev polynomial expansion
[58,63-71,156,157], the conjugated gradient method [72,73], the quantum-molecular-dynamics
calculation [ 74] and the method for direct integration of the time-dependent Schrodinger equation
[75-77].

The algorithm based on the FOM proposed by Nakayama and Shima [9,78,79] is quite effective
for the calculation of linear response functions for quantum systems described by large-scale
Hamiltonian matrices. The advantages of this method compared to existing methods are that (i) it
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requires memory space of the order of N for sparse matrices, (ii) the computing time is proportional
to N2, and (iii) it is easy to vectorize and parallelize for implementations in array-processing
modern supercomputers. The last point comes from the fact that the time-consuming part in
computations is the solving of the time evolution of equations of motion, and so the program is
easily optimized.

6.1. Kubo formula and the FOM

We consider a quantum system described by the following Hamiltonian:
A=Y Dylmy{n| (mn=12,...,N), (6.1)

where (m| is the bra vector in the site notation. The ket vector is defined as well. Since the set {|m)}
satisfies the closure relation ), [m){m| = 1, an arbitrary state is expressed as

) =2 an(t)lm) . (6.2)
Let us impose a small perturbation ¥ to the system given by

— % Y & (fee " +cc), (6.3)

a

where X, is the o component of the generalized displacement and fg is the corresponding
generalized force. c.c. indicates a complex conjugate. In the spectral representation, this is written in
the form

V=3 2 imyVim@<nl

o mn

= YT (xS + ). (6.4)

oa mn

Here, V%,(t) = (m|V,n)> and x%, = (m|%,|n)>. Substituting Egs. (6.1) and (6.3) into the time-
dependent Schrodinger equation for |¥(t)> and multiplying by <k| from the left, we have the
inhomogeneous coupled linear differential equation

-1, Z Dmnan t) - Z Z an(t an(t (65)

For a small perturbation, the time-dependent first-order perturbation theory is applicable by
putting a,,(¢) = ald(t) + Y,ali)(t) into Eq. (6.5). The zeroth-order equation becomes

da‘o)

- Z Dmn 510) O ) (66)
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while the first-order term yields

dainla)(t

~ ¥ Donalf10) = ¥ Va0 (67)

From Egs. (6.4) and (6.7), one has the first-order linear differential equation with the periodic
external force

d 0 h . - ‘
amaz( _ Z Dmn Li) 2 (Fmae—uut + Fmaelwt)e—lw,h,t . (68)
Here
F I8 st ool Fow = Y15 1000
mo Z %xmnen( 0)» Fma - Z h mn n( “0) » (69)

where e,,(49) = {m|w,, ) is the mth element of the initial eigenvector belonging to the eigenvalue
hw,, of the matrix {D,,} [see Eq. (6.6)]. In the derivation of Eq. (6.8), we assume that the
unperturbed state with the eigenfrequency fw;, is given by

a1) = eplig)e "

The function ai;)(t) is expanded by a set of eigenvectors {e, (1)} as

aw)(t) = ), E(ten(2) , (6.10)
A
where £5(t) is the amplitude of the mode 4. From Eq. (6.8), one has the equation for &5(¢),
.d&s(e
%t() )éa(t __{Z en [F efl(w + o)t + F ,€ —i(w;0 w)t]} , (611)

where the orthonormal condition Y ,e,(2)ei(4) = d;; 1s used. Under the initial condition
£%(0) = 0, the solution of Eq. (6.11) becomes

—im;t (w;, —w;, —w)t __ 1 - (0, —w;, To)t __ 1
0= —= {Z ef:(A)[an + P }} . (612)

W, —w;, — w; —w; +o

The second term in the square brackets is negligible since we consider the case of zero temperature
and treat the Fermi distribution function with the Fermi frequency wg = Ex/h as a step function.
This implies that w; > wr > w,,, namely , — w,, > 0, indicating that the contribution from the
first term with w;, + ® ~ w, is dominant.

Let us introduce the resonance function defined by

Ep(Q,) = ) dpd*(amp(t) = Y EX0)EN() . (6.13)
A

Substituting Eq. (6.12) into Eq. (6.13), one has, att =T,
sinz{(a),l —Q)T)2}
(0; — Q) ’

E Q. T) = 2 (6.14)

mam
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where Q = w;, + . The orthogonality condition for eigenvectors {e,(4)} is used to derive
Eq. (6.14). Eigenvectors contributing to the sum in Eq. (6.14) are those whose frequencies lie within
the width of /T around Q. Suppose that the following conditions are satisfied as mentioned in
Section 4.2,

1 4n
g < T < Ao’ (6.15)

where Aw is the average eigenfrequency spacing. Taking a proper time interval T satisfying the
condition Eq. (6.15), Eq. (6.14) gives

ZFmae

A straightforward calculation leads to the following representation, using the expression for
F,., introduced by Eq. (6.9),

2

S, — Q). (6.16)

aB Q T) _Z

¥ Fui) =155 xinenli)ei0)
5 :
= oyl iny oo, >

= %<wl|§<a|w%> . (6.17)

Substituting Eq. (6.17) into Eq. (6.16), we have

T/ oﬁ

Eaﬁ(Q: T) = 2h2

Y. <z, %505 3w, [%plw, Yo(w, — Q) . (6.18)
A

The generalized susceptibility y,s(w) under the generalized external force defined in Eq. (6.3) is
given by the Kubo formula [53],

fapl@) = f L0, 5O dr (6.19)

where angular brackets denote the quantum and thermal averages. At zero temperature, the
imaginary part of the generalized susceptibility for a given initial state |w,, ) is expressed by

Xaﬁ Z Re[<60/10 | Xy |, ><wz|xﬁ|wzo >:||:5((Uuo — ) — 5(60/1/10 + w)]

1 1 1
— 5 P Im[o;, [%]o; < s 1%l0;, >]< - ) : (6.20)
A

Wy — O @y, + O

where the symbol P means a principal value integral, and a)MO = a),l — w,,. If o = f, the second
term of Eq. (6.20) vanishes. In this case, choosing f& = f& = 1, y/.(w) can be expressed by the
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resonance function given by Eq. (6.18) as

2hE,(Q,T)

fanlo) = 20 (621

This is the key relation between the resonance function E,,(Q, T) [Eq. (6.13)] and the imaginary
part of the generalized susceptibility y,,(w). From this relation, we can compute y,,(w) from
calculations of eigenvectors e, () in Eq. (6.9) and the time-development of ail)(t) governed by

Eq. (6.8).

6.2. Computing the Kubo—Greenwood formula

This section describes the relationship between the Kubo-Greenwood formula [53,54] for the
AC conductivity as a special case of the generalized susceptibility y,5(w) and the resonance function
defined by Eq. (6.13). A small perturbation due to the vector potential A(t) applied to an electronic
system is expressed as V/ = — J-A(t), where J is the current operator. Since the conductivity is
defined as the response to the electric field E(¢), the generalized conductivity 2,;(w) is related to the
generalized susceptibility y,4(w) via the relation X,5(w) = y,4(w)/ioL?, where L is the linear size of
the d-dimensional system.

The generalized conductivity is given by [53]

_ inez 1 : * iot —st T T
2(0) = 2 5 4 ol tim | 07,00 622

where J,(f) is the o component of the current operator. The first term comes from field-free
electrons. From this, one can derive the longitudinal component of the AC conductivity
o(w) = Re[Z,,(w)] by setting « = f and %, = J, in Eq. (6.3). Considering the Fermi distribution
function f(w) at zero temperature, the longitudinal AC conductivity o(w) is written by the
imaginary part of the generalized susceptibility y"(w)[ = y..(®)] as

2
a(w) = mz 1 (@S (@5,) — flw;, + w)]

2 (3
=— > Jlo, (6.23)

Wj0 =WF — W

where the spin freedom is taken into account and the definition of the Fermi frequency is
g = Eg/h. The meaning of Y or —,, —,, is the sum over the initial state |w;, > at zero temperature.
From Eqgs. (6.21) and (6.23), the longitudinal AC conductivity expressed by the resonance function
given by Eq. (6.13) becomes

oo
a(w)zﬁ Y EQT)), (6.24)

Dy = WF — O

where the time interval T satisfies the condition Eq. (6.15).
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Eq. (6.23) is equivalent to the Kubo-Greenwood formula as verified below. Eq. (6.23) can be
rewritten as

o) == f dE,, HE,, )/ (), (6.25)

D JE: —ho

where Z(E;, ) means the spectral density of states at the eigenenergy E; = hw,, . Substituting
Eq. (6.20) into Eq. (6.25) and taking account of w; — w,; >0 as explained below Eq. (6.12),
one has

2 2 Er
o) =723 { f dE;, Ko i, YPE;, )5(0s, + 0 — wz)} : (626)

o, Ex —ho

where » is the velocity operator. The use of the relation X, :Ldf@(El)dEl in Eq. (6.26)
yields

dneL! Er o
O'(C()) = o dE,l dEwlo|<(,0;L|l7|6();‘0 >| @(EAO)Q(E/I)(S(E/IO + h(,l) — EA)

Er —hw

= 2ne2hLdjEF dE%KCO/10 + oltlo; )l

Er —ho ha)

NE;,)H(E,, + ho). (6.27)

This is the Kubo-Greenwood formula [53,54]. We have proved the equivalency between Eq. (6.23)
and the Kubo-Greenwood formula.

The calculation of the resonance function in Eq. (6.13) is reduced to the numerical solution of the
first-order coupled linear differential equation with a periodic external force, expressed by Eq. (6.8).
By decomposing the function a'})(¢) in Eq. (6.8) into a real part x,,(t) and an imaginary part y,,(t),
one has

dx,, (1) R
hT — Zn:Dmny"(t) = sz s1n(Qt) . (628)
hdyst(t) — Y Dya(t) = %F,,, cos(Qt) . (6.29)

n

Here we have assumed, for simplicity, that the elements {D,,,} and {F,,} are real. These equations
of motion can be numerically solved by the FEM described in Section 3.2.

Details of the implementation of our algorithm are as follows. (i) We prepare the initial
states {e,, (o)} belonging to the eigenfrequency w,, by applying the FOM described in Section 2.3.
(ii) The matrix elements x%, in Eq. (6.4) are given analytically, and the external force F,,, defined
by Eq. (6.9) is determined. (iii) Taking the time interval T as T = 4n/AQz (AQR > dw), we
calculate x,(t) and y,(t) described by Egs. (6.28) and (6.29) with the initial conditions
Xm(0) = y,,(0) = 0 and X,,(0) = y,,(0) = 0. We can finally obtain the resonance function by using
Eq. (6.13). Note that the frequency resolution AQy can be determined and controlled by the time
interval T.
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6.3. AC conductivity of 1D chain

In order to assess the efficiency of this algorithm, we illustrate a one-dimensional (1D) tight-
binding Hamiltonian with N sites given by

H=Y eulmy<m| = tyalmy<nl (6.30)

where we set ¢,, = 2 and t,,,,+, = 1 for the hopping term between nearest neighbors. The matrix
elements for the current operator J = eb are obtained from the Heisenberg equation of motion as
Jum+1 = <m|Jlm + 1> = Fie/h by taking a lattice spacing a = 1. We have calculated the reso-
nance function defined by Eq. (6.13) with o = f under the fixed boundary condition.

Fig. 6.1 represents the comparison of numerical results (solid circles) with the analytic solution
(solid line) for the 1D chain with N = 10,000 on a double logarithmic scale. The system of units
used here is ¢ = h = 1. For these calculations, we have chosen the resonance width in Eq. (6.14) as
AQyr = 4n/T with T = 4n x 100. There exist about 25 modes within this resonance width AQy. The
initial eigenvector {e,(4o)} calculated by the FOM has a purity of 4,/4; ~ 1073. We see from
Fig. 6.1 that the calculated result agrees fairly well with the analytic result over an order of
magnitude in frequency.

6.4. Critical behavior of AC conductivity near the Anderson transition

The scaling arguments of localization [80,81] have stimulated many works on both static [82]
and dynamic critical behavior [83,84] for disordered electron systems, especially on the Anderson

1
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Fig. 6.1. AC conductivity o(w) of the 1D tight-binding chain with the system size N = 10, 000. The resonance width AQy
is taken to be AQg = 0.01 in the frequency range @ = 0.02-0.4 in the system of units given in the text. The solid line
indicates the analytic solution showing the @~ 2 dependence. From Ref. [9].



T. Nakayama, K. Yakubo | Physics Reports 349 (2001) 239-299 283

transition. The existence of this transition depends on the dimensionality and the symmetry of the
system. Three-dimensional (3D) systems may show the Anderson transition, and their critical
behaviors are classified into three universality classes according to the basic symmetry of the
Hamiltonian [82,85,86]. Systems being invariant under spin rotation in addition to time reversal
constitute the orthogonal class, while systems being invariant under time reversal but having no
spin-rotational symmetry belong to the symplectic class. Systems without time-reversal symmetry
forms the unitary class.

Many numerical works have contributed to reveal both the static and dynamic behaviors of the
transition through the investigations of localization length [87-89], diffusion of wave packets
[82,90-93], and level statistics [94-98]. The value of the critical disorder W . above which all states
are localized is known to be W = 16.5 for 3D orthogonal systems [87,99,100]. Wegner [83] has
predicted in terms of a scaling argument that the AC conductivity g(w) in 3D systems near the
transition obeys the power law a(w) oc w'/®. This behavior was not numerically verified until the
numerical analysis by Lambrianides and Shore [101]. They have evaluated the Kubo-Greenwood
formula [53,54] by calculating directly eigenvectors of the system with the diagonalization method,
so the system sizes N( = L°>) treated were very limited (L = 6-14), indicating the relevance of the
finite size effect.

We show here the calculated results of AC conductivities a(w) for 3D orthogonal systems to
demonstrate the efficiency of our numerical method. The system is described by a Hamiltonian
similar to Eq. (6.30) except that the site indices m and n run over three-dimensional lattice points.
The on-site potential ¢, is uniformly distributed in the range [ — W, W. The hopping energy ¢,,, is
chosen as unity for the nearest neighbor sites and zero otherwise. The densities of states calculated
by the FOM described in Section 2.2 for the system size N = 30 are shown in Fig. 6.2. We consider
the case of critical disorder W .( = 16.5), for which the mobility edge appears at @ = 0. The Fermi
energy hwg is set to be zero, namely at the center of the flat band (see Fig. 6.2). Fig. 6.3 shows the
calculated AC conductivity for 3D systems with N = 30 averaged over 20 samples with various
realizations of the random potential {,,}. The result clearly shows the power law a(w) oc »'/? as
predicted by Wegner [83] for 3D orthogonal systems. The error is within 12%.

7. Finite-time scaling method for the FOM
7.1. Finite-time scaling

The method described in Section 2.2 is quite effective for calculating densities of states (DOS) of
large-scale systems. However, it should be borne in mind that the DOS depends on the resolution
o¢ [thus on the time interval T in Eq. (4.16)]. If the DOS of an infinite system has a power-law
dependence near a critical energy ¢. such as

D(e) oc (e, — &), (7.1)

one has to take great care of choosing the value of T to determine the exponent o and the critical
energy &, because the spectrum becomes dilute continuously on approaching ¢.. To avoid this
difficulty, a scaling approach combined with the FOM proposed by Hukushima and Nemoto
[102] is very practical.
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Fig. 6.2. Densities of states for the 3D Anderson model of noninteracting electrons in a uniformly distributed random
potential with W = W and W = 0. The system size is N = 30°. The resonance width is taken as AQy = 0.2. The data are
averaged over 10 samples. From Ref. [9].

Fig. 6.3. AC conductivity o(w) for the 3D Anderson model of noninteracting electrons in a uniformly distributed random
potential with W = W . The system size is N = 30°. The resonance width is taken as AQ = 0.01 for the system size
N = 303. The data are averaged over 20 samples. The solid line is drawn by a least squares fit and each of the error bars is
defined as a standard deviation. From Ref. [9].

Since the energy distance ¢, — ¢ provides the unique characteristic time scale of the system if the
DOS obeys Eq. (7.1), the DOS calculated by the FOM with a finite time interval T is expressed in
terms of the finite-time scaling form such as

@(87 T) = (gc - g)“f[(gc - 8)T] 5 (72)
where the scaling function should have the asymptotic form:

const. forx>1,

J(x) e { (7.3)

x ¢ for x < 1.

The last form reflects the fact that the DOS becomes constant if the time interval T is short and d¢
becomes large. The validity of this form can be verified by substituting Eq. (2.13) into Eq. (2.15) and
performing the integration using the formula ¥, = [ de%(e). Hukushima and Nemoto [102] have
applied this argument to investigate the band edge structure of the + J spin glass model. They
have succeeded in obtaining the exponent o and the energy ¢, by fitting the data for various T to
the scaling function f(x).

The idea of this technique is applicable to determine a dynamic exponent near a quantum phase
transition [9,78,79]. As mentioned in Section 6.4, the 3D Anderson model exhibits the metal-
insulator transition, and the AC conductivity a(w) at the transition point (W = W, and hwg = 0)
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follows:
o(w) oc ® , (7.4)

with § = § [83]. The exponent § can be determined accurately by using the finite-time scaling
technique. Since the DOS near wg = 0 (the critical point) is almost constant as shown in Fig. 6.2,
there is no characteristic energy at criticality. Therefore, only the frequency w characterizes the time
scale of the system. Thus, the AC conductivity calculated by the FOM with a finite time interval
T is written in the scaling form:

o(w, T) = T °G(wT), (7.5)
where the asymptotic form of G(z) should be

Al forz> 1,
G(z oc{

(7.6)
const. forz<1.

The asymptotic form for z < 1 is due to the fact that the resonance function given by Eq. (6.14) does
not depend on Q if the time interval T is short because the sine function in Eq. (6.14) has a broad
peak for small T.

The above asymptotic forms can be also confirmed by Eq. (6.14) and using the constant DOS
near wg = 0. From Egs. (6.14) and (6.17), the explicit form of the resonance function is given by

2 sin*{(w; — w;, —w)T/2}
(w; —w;, — (U)Z

0

1 N
E(w;,,»,T) = Efdwz@(wz)l<wzllelo > 5 (7.7)
where the density of states Z(w,) is introduced by the definition ), = Ldf d(hw;)9(m,). Since the

AC conductivity of an infinite system is expressed by Eq. (7.4) for a sufficiently large time interval T,
Eq. (7.7) for T(w;, + w) > 1 should be

E(Cl);m , ), T)
—

T dez(wz — ;) 0w, — w,, —w)oca’. (7.8)

We have used the fact that Z(w,) is nearly constant in the band center. For the short time interval
T, the resonance width in Eq. (7.7) becomes wider than the bandwidth and one yields

E(w;,,»,T)

S T (7.9)

From these two extreme cases, the scaling form of the resonance function, or equivalently the AC
conductivity, obeys Egs. (7.5) and (7.6).

7.2. Results for unitary and symplectic systems

In this section, we show the calculations of the dynamic exponents for 3D unitary and symplectic
systems in terms of the finite-time scaling method. Unitary and symplectic systems are actually
realized by a magnetic field and a spin-orbit interaction, respectively. For these systems, the
Hamiltonian matrices become complex and quaternion real. Therefore, it is not easy to calculate
a(w) by conventional methods.
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The Hamiltonian of the system is given by

H =73 enlmoy{ma| + Y. twgno|moy<ind’|, (7.10)
mo mao,ne’

where m and ¢ denote the lattice site and the spin, respectively. We again set the lattice constant to

be unity and only the nearest neighbor coupling is taken into account. The on-site potentials {,, }

are uniformly distributed in the range [ — W/2, W/2]. In the unitary case, 4., 1S given by

tma,na' = texp(i¢mn)5aa' (71 1)

The Peierls phase factor ¢,,, depends on the magnetic field and the gauge. In the symplectic case,
the hopping energy is described by [103,104]

Umo,m—ke' = t[exp( - igo—k)]o‘a’a k= 565 j}a2 5 (712)

where o), are Pauli matrices. We choose the hopping amplitude ¢ as the energy unit. The orthogonal
system can be also described by Eq. (7.10) by taking t,,4..s' = t044--

We set the disorder strength W = W = 17.9 [105] for the unitary case, assuming that a uniform
magnetic field is applied parallel to the z-direction and the magnetic flux through a plaquette of the
x-y plane is set to be 0.2 flux quanta. For this strength of the magnetic field, the Peierls phase in
Eq.(7.11) becomes, in the Landau gauge, 2n/5 for n = m + X and zero otherwise. For the symplectic
case, we set 0 = /6 in Eq. (7.12), and W is set to the critical value W, = 19.0 [98]. The Fermi
energy Er is fixed to the band center. Actual calculations have been performed for systems with
30 x 30 x 30 lattice sites for both cases. In each case, averaging over 20 independent realizations of
random potentials has been performed.

Fig. 7.1 presents the calculated results of a(w) for both cases taking various time intervals
T =mn/2 — 200% [79]. The corresponding resonance widths become 4n/T = 0.02 ~ 8.0. We see
from Fig. 7.1 that the calculated results follow the w!/3-behavior with increasing time interval
T over two orders of magnitude in frequency. Fig. 7.2 shows the scaling function G(z) defined in
Eq. (7.5). The most likely fit is determined by the y2-statistic, and confidence intervals for fitting
parameters were estimated from the Bootstrap procedure [1]. The calculated results of the
exponents are 0 = 0.34 + 0.02 for the unitary case and 6 = 0.34 + 0.01 for the symplectic case.
These values agree well with the prediction of the scaling theory for the AC conductivity a(w) [83].
The errors in these exponents are much smaller than those in the results given in Fig. 6.3.

8. Extension to non-Hermitian matrices

The eigenvalue analysis for non-Hermitian matrices becomes important in many areas of
condensed matter physics such as antiferromagnets [106,107], spin-glasses [108,109], electronic
structure [110], the master equation in nonequilibrium thermodynamics [111], and the vector-
mode analysis of optical waveguides [ 112-114]. The standard method for treating the eigenvalue
problem of N x N non-Hermitian matrices is a diagonalization technique such as the QR method
or the Arnoldi method [115,116]. These have, however, the serious drawback requiring a large
amount of computer memory space, which makes it difficult to analyze very large non-Hermitian
matrices. Another difficulty arises from, in general, the eigenvalues of non-Hermitian matrices
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Fig. 7.1. AC conductivity o(w) for 3D (a) unitary and (b) symplectic systems for various time intervals 7. The system size
is taken as N = 303. From Ref. [79].

Fig. 7.2. Scaling function G(z) introduced in Eq. (7.5) for 3D (a) unitary and (b) symplectic systems. The estimated values
of dynamical exponents are o = 0.34 + 0.02 for unitary case, and § = 0.34 + 0.01 for symplectic case. From Ref. [79].

being sensitive to small changes in matrix elements. The difficulty is due to the lack of ortho-
gonality among eigenvectors for non-Hermitian matrices. From these mathematical difficulties,
practical algorithms have not yet been developed for the analysis of large non-Hermitian matrices.
The basic idea of the FOM is applicable to large-scale non-Hermitian matrices. We describe here
the algorithm analyzing large-scale non-Hermitian matrices.

8.1. Mapping onto lattice dynamical equations of motion

An asymmetric (as well as non-Hermitian) matrix has two sets of eigenvectors called the right
eigenvector u(/) defined by

8).um()“) = Z Dmnun(/l) (81)
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and the left eigenvector v(/) given by

&:0m(2) = ) 0a(A) D - (8.2)

n

These eigenvectors belong to the same eigenvalue ¢;. Though left (or right) eigenvectors do not
form an orthogonal set themselves due to the asymmetric nature of the matrix {D,,}, bior-
thogonality conditions are found between them [3,117]. These are written as

zu W) = dm (8.3)
and
N U (AEQR) = 050 - (8.4)

The mapping of Eqgs. (8.1) and (8.2) onto the equations of motion is done by, as in Egs. (2.2) and
(2.3),

dz
a7 o) = = L Dwxal0) (8.5)
d2
dtzym - _ZD;m*yn )a (86)

where D,,, is defined as Dy, = D,,, + d,..&0. Since u(4) forms a complete set of vectors [note that
u(4) does not form an orthogonal set, but they are linearly independent], the displacements x,,(t) and
Ym(t) can be decomposed into a set of right and left eigenvectors u(1) and v(4) as

X (1) = ; Q:(Oum(4) , (8.7)
Ym(t) = ; R;(0)om(2) . (8.8)

8.2. Spectral density
We treat hereafter real asymmetric matrices {D,,,}. The generalization to non-Hermitian

matrices with complex elements is straightforward. We introduce the quantity E(t), corresponding
to the energy function Eq. (2.6), defined by

E(t) = {Zx:t»w +§j%AﬂDwa0}

= _Z {Q/I )R,(t) + 130 (DR ,(¢ )} (8.9)
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where the biorthogonality condition Eq. (8.4) and u3 = ¢, + ¢, are used. Using the quantities &,(t)
and n,(t) defined by &,(t) = 0,(t) + i, Q,(¢) and n,(t) = R,(t) + i, R,(¢), Eq. (8.9) is rewritten as
E(t) = 3., &5(t)n,(t). Thus, if an external periodic force F,, cos(€t) is applied to the system, one has
as in the case of Eq. (2.12),

sin?{(u, — Q)T/2}

E(T) = Z{ZF Om HE Fnun(z)} TR (8.10)

The averaged value of E(T) over ¢,, becomes

CETYy — Z s1n2{ (1 —g))ZT/z} <Z U (At (4) cos(¢m)cos(¢n)>

_F ¥ Sinz{(/iz — QT/2}
24 (1, — Q) ’

(8.11)

where {---) denotes the random phase average and the terms satisfying m = n remain in the
summation for m and n. Provided that the proper time interval T is used, Eq. (8.11) yields

TETF2 nTNF%

CEQ,T)> 25 w—Q 8 99, (8.12)

where Z(Q) is the density of states for the mapped system. The spectral density of the original
matrix D,,, is given by Eq. (2.15).

8.3. Eigenvectors

Using Eqgs. (8.5) and (8.7), the equation of motion for right eigenvectors u# with the external force
F,, cos(Q2t) is written as

Y {sz‘(t) + ,u%Q,l(t)} U (2) = F,, cos(Qt) . (8.13)

2
T | dt

Multiplying the left eigenvector v,,(4) and taking the sum over m and 4 in Eq. (8.13) under the
condition Eq. (8.4), one obtains the equation for the amplitude Q,(t) as

d2
0 1 120,

=Y {Fputm(2)} cos(Qt) . (8.14)

Eq. (8.14) is solved with the initial condition Q,(t = 0) = 0 as

0,() = {Z Fmvm(}v)}Zsm{ (Q + mg?}_sz{(Q I t/2} 8.15)

Using Eq. (8.7), the amplitude of x,,(t) after the time interval T is
2sin{(Q + w;)t/2} sin{(Q — ,u,l)t/2}

Z{ZFm O } 0T 2 Unm(2) . (8.16)
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Note that this equation corresponds to Eq. (2.17). After p iterations of the procedure described in
Section 2.3 [see Eq. (2.20)], the amplitude x,,(T) becomes

XW(T) =Y, {Z F mvm(i)} [2 Sn{(@ ¥ Mgézis;{(g — )l 2}} (7 (8.17)

Only a single eigenmode 4; (u;, ~ Q) survives for sufficiently large p, namely,
X (T) ~ Cuty (1) (8.18)

where C is a constant.

The above argument ensures that eigenvectors of non-Hermitian matrices can be calculated in
exactly the same way as that for Hermitian matrices. Therefore, the eigenvalue ¢, for u(/) is
obtained by the procedure described in Section 4.1.

8.4. Dynamical properties of percolating antiferromagnets

In this section, we show an example of the eigenvalue analysis for non-Hermitian matrices, i.e.,
the spin-wave dynamics of percolating antiferromagnets. Spin-wave excitations on percolating
Heisenberg antiferromagnets show peculiar properties originating from geometric disorder and
self-similarity [118,119]. They possess characteristics of fractons as vibrational excitations on
percolating networks (see Section 5.2). However, the symmetry of the matrix characterizing the
equations of antiferromagnetic spin-wave motion is different from those for lattice vibrations or
ferromagnetic spin waves [42]. Therefore, we expect that the essential nature of antiferromagnetic
spin-wave fractons differs from that of vibrational ones. The Hamiltonian of a percolating
Heisenberg antiferromagnet is described by

H=Y JpSnS, . (8.19)

where S, denotes the classical spin vector with magnitude S at the site m, and J,,, is the exchange
coupling between the nearest-neighbor spins at the sites m and n. Each lattice point is occupied by
a spin with the probability p (see Section 5.2). J,,, is chosen as J,,, = 1 if both sites m and n are

occupied, and J,,, = 0 otherwise. The linearized equation of motion for spin deviation S,; from the
perfect Néel order is expressed, in units of S/h = 1, by

ias,:
ot

= O-mz Jmn(Sn+ + Sr::) > (820)

where S, = S + 152, and g, is taken to be + 1 for the site m belonging to the up-spin sublattice
and — 1 to the down-spin sublattice. The same equation holds for S,,( = S;, — iS},). This equation
has different symmetry from the equations of motion for ferromagnetic spin waves (or lattice
vibrations with scalar displacements). The dynamical matrix element D,,, is given by D,,, = 6,,J un
for m #n and D,,, = 6, ,J . Note that the dynamical matrix D is antisymmetric, namely
D,,, = — D,,, due to the coefficient o,,. See the details in Refs. [11,120-125].
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Fig. 8.1. (a) Densities of spin-wave states for 2D (squares), 3D (triangles), and 4D (circles) bond-percolating antiferromag-
nets at p = p.. The results have been obtained by averaging over 1, 3, and 6 realizations of bond-percolating networks
formed on 1100 x 1100, 100 x 100 x 100, and 28 x 28 x 28 x 28 hypercubic lattices for d = 2, d = 3, and d = 4, respective-
ly. From Ref. [121]. (b) Densities of vibrational states for 2D (squares), 3D (triangles), and 4D (circles) bond-percolating
networks at p = p.. Conditions for calculations are the same with the case of (a). Fluctuations in densities of states at high
frequencies do not represent computational errors, but indicate fine structures due to local configurations of atoms in
single samples. From Ref. [120].

The results for the densities of spin wave states of bond-percolating networks at the critical
concentrations (see Section 5.2) are shown in Fig. 8.1(a). System sizes are 11002, 1003, and 28* for
d =2, 3, and 4, respectively. For any d, the densities of states are nearly constant at lower
frequencies. This suggests that the fracton dimension d,p for spin waves in percolating anti-
ferromagnets is unity for any Euclidean dimensions, while d for vibrational fractons becomes close
to § for any d [see Fig. 8.1(b)]. Since the fracton dimension is the key dynamic exponent as
mentioned in Section 5.2, the fact dyr # d implies that antiferromagnetic spin-wave fractons belong
to a different class of universality from that for vibrational ones. The physical interpretation is
given in Ref. [11].

Using the right and left eigenvectors, linear response functions of systems described by non-
Hermitian matrices can be also computed by the FOM. Fig. 8.2 shows the dynamic structure factor
S(g, w) of spin waves excited on 3D percolating antiferromagnets. Details of the algorithm are
presented in Refs. [122-124]. The specific feature of S(¢,w) obtained from these numerical
calculations have been recently confirmed for percolating Heisenberg antiferromagnets
RbMng 30Mgg 61 F3 in terms of inelastic neutron scattering experiments by Ikeda et al. [126].

There is another example of the eigenvalue problem of non-Hermitian matrices: The mode
analysis in optical waveguides. The precise numerical analysis has become crucial to understand
the propagation characteristics of light in waveguides for the optimum design of optical devices.
Although a lot of efficient numerical methods for the eigenmode analysis of optical waveguides
have been proposed [127-130], most of them have been performed under the scalar-wave
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Fig. 8.2. (a) Dynamic structure factor S(q, w) for 3D bond-percolating antiferromagnets at p = 0.32 (p. = 0.25) formed
on 863 cubic lattices. (b) Dynamic structure factor S(gq, ) for 3D bond-percolating antiferromagnets at p = 0.75 formed
on 403 cubic lattices. The double-peak structure appears in this case. From Ref. [124].

approximation. The scalar-mode analysis is only valid for weakly guiding structures, but not
accurate for waveguide structures with a large variation of refractive indices such as semiconductor
waveguides. While [ 112-114] methods incorporating the vector nature of light waves are rigorous,
these are usually complicated and require much computing time for practical calculations. This is
because vector-mode analyses need to treat large-scale asymmetric (or non-Hermitian) matrices for

achieving highly accurate calculations. We omit the detailed description on this subject. The reader
who is interested in this can see Refs. [131,132].

9. Unstable oscillator method

In many-body problems, it is often necessary to calculate the ground state and the first few
excited states and the corresponding eigenenergies of a very large-scale system. The Lanczos
method is one of the most popular and powerful scheme for this purpose. Okamoto and Maris [20]
have proposed an efficient method, the so-called unstable-oscillator method (UOM), for calculat-
ing the extreme (minimum or maximum) eigenvalue and the corresponding eigenvector of a large
Hermitian or non-Hermitian matrix. The UOM is not appropriate for calculating arbitrary
eigenvalues and eigenvectors in the central range of the spectrum as in the case of the FOM. It is,
however, possible to compute extreme eigenvalues and eigenvectors much faster than in the case
using the FOM. Although the method does not belong to the family of the FOM, it is deeply
related to the FOM in the sense that a given matrix is mapped onto a lattice dynamical problem
[20,21]. Therefore, we briefly describe the essence of the UOM in this section.

For a given Hermitian matrix D, let us consider the corresponding equations of motion Eq. (2.2).
In the FOM, we apply an external periodic force to the dynamical system [Eq. (2.9)], and solve
Eq. (2.9) by the FEM. On the contrary, the UOM integrates the equations of motion Eq. (2.2)
(the external-force free system) by the modified Euler method described in Section 3.1. Usually, the
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time step in the modified Euler method has to be taken as small as possible in order to minimize
the error caused by discretizing time. The UOM chooses a time step 7 not satisfying Eq. (3.7), and
gives rise to the instability intentionally. Such a trick can provide a very effective way for the
determination of the extreme eigenvalues.

Substituting Eq. (2.4) into Eq. (2.2) and using Eq. (2.1), we have the equation for the amplitude

0,(t) as
dQ. .,

5 TH0=0. ©.1)

This equation is divided into a set of two equations,

d
&Pz(t) = —1;0;(1),

d
an(t) = P,(1) . 9.2)

According to the argument in Section 3.1 [Eq. (3.4)], the modified Euler method yields the
discretized coupled equations [12],

P,(l+1) = P,() — u3Q;(l) ,

0,1+ 1) =Q;() + Pl + 1), (9.3)
where the time ¢ is [t with integer [. These equations lead to the relation
0l +1) =2 —2t)Q:() + Q:(1 - 1) =0. (9.4)

Assuming Q,(I) = (,)" with a constant 8,, one has

2 22_|_ /2.2 22_4
ﬁ/-l_'—= HTT T T (:uAT ) (95)

2

The general solution for the amplitude is then given by

0,()=ci (B +c (), (9.6)

where ¢; and ¢; are to be determined by the initial conditions. The behavior of the solution is
classified into two cases:

(A) 1] =1, for 0 < p;7 <2,

(B) 1Bl # 1, for p;t > 2.
This provides the basis of the UOM. Amplitudes of modes with u; > 2/t grow exponentially with
increasing time, while modes with pu,; < 2/t oscillate stably. Thus, choosing the time step t so that
all eigenfrequencies p; except for the maximum one p;  satisfy the condition p;7 < 2, one can
extract the growing extreme eigenvector e(Amay)-

The optimum time step t can be determined from the following potential energy,

U= %Z DD (Xl + 1) + 25,(0) + X, — 1)} . ©7
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where x,,(/) is the displacement of the mth atom at ¢ = It under the initial conditions of x,,(0) = ¢,,
and X,,(0) = 0, where ¢,, is a random variable. This yields [20]

U = 53 14 — 1080 09)

The time step 7 to obtain only the mode having the maximum eigenfrequency is the smallest time
step at which U for a large [ changes to a negative value. The eigenvalue corresponding to this
extreme eigenvector can be calculated by Eq. (4.7). The purity of the mode is evaluated by ¢ given
by Eq. (4.8).

The next highest eigenfrequency is obtained from the initial displacement vector {x,,(0)} without
the extreme-eigenvector component. This is done by the Gram-Schmidt method:

Xm(O) = d)m - em(/lmax)z d)ne;lk(/lmax) P (99)

where ¢,, is the random variable defining the initial displacement vector for obtaining e(Ap.y).
Under the initial condition of zero-velocity vector, the maximum frequency becomes the next
highest eigenfrequency p; _—; of the original system. Using the quantity U defined by Eq. (9.7), we
determine the new time step for obtaining the next highest eigenfrequency p, _; and its
eigenvector, and so on.

Asin the case of the FOM, the algorithm requires the computing time proportional to N2, where
N is the system size. However, the proportionality coefficient for the UOM is much smaller than
that for the FOM, implying that the UOM is faster than the FOM. This is because the
extreme eigenvector grows exponentially in the UOM, while the amplitude of the resonating mode
increases linearly in time in the FOM. The drawback of the UOM is that one can calculate only
a few eigenvalues (and their eigenvectors) near the spectrum edge. Due to the fact that the
extreme eigenvector obtained is not completely pure, the initial displacement vector defined
by Eq. (9.9) slightly contains the u.,,, component e(4,,,). This makes it difficult to calculate
eigenvectors e(4) with u; far from yu,_ . This method is easily extended to non-Hermitian matrices
[131,132].

10. Conclusions

Computer simulation has become a very intensive area of science and engineering with the
development of new algorithms, which are originated from a number of different subjects with their
own problems and goals. Though such simulations are likely to play an important role in
laboratory experiments, those are often unjustified due to the complexity of their numerical
algorithms. The forced oscillator method (FOM) has provided a unique and highly efficient
scheme. This method is very powerful for calculating the spectral density, eigenvalues, and
corresponding eigenvectors of Hermitian or non-Hermitian matrices in addition to the linear
response functions of classical and quantum systems. The superiority of the FOM lies in its
computational efficiency and the ability to treat large dynamical systems containing up to 10’
particles. The method has the following advantages: (i) the memory requirement is of the order of
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Fig. 10.1. Overview of developments and extensions of the forced oscillator method (FOM). Number after section at the
right corner represents the related section.

N for sparse matrices, (ii) it is very suitable for implementations in parallel and vector processing
supercomputers, (iii) the computations for the spectral density can be made within an arbitrary
range of eigenvalues and with a given resolution, and the computing time scales linearly with the
matrix size N, (iv) one can calculate quite accurately the specific eigenvalue and its eigenvector with
a computing time proportional to N2, and evaluate its accuracy and purity, and (iv) linear response
functions are easily calculated in the context of the FOM. In particular, the efficiency of the FOM
becomes remarkable when combined with the FEM [14-19].

The FOM has been successfully applied to a number of problems such as, for Hermitian matrices,
dynamics of fractal and glassy systems [43,120,133-147], photon localization [ 148,149], electronic
states in mesoscopic systems [9,79,88,150,151], electronic structures of amorphous systems
[152,153], and =+ J Ising spin glasses [102], and for non-Hermitian matrices, spin-wave dynamics
of antiferromagnets [11,121-123] and waveguide analysis [131,132,154]. This situation is illus-
trated in Fig. 10.1.

Finally, we would like to point out that the following list of references would not do justice to the
entire area of eigenvalue analysis and computing linear response functions. Readers should follow
their own interests by looking at reviews and books cited in the following references.
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