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Glossary

Anomalous diffusion It is well known that the mean-
square displacement hr2(t)i of a diffusing particle on
a uniform system is proportional to the time t such
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as hr2(t)i � t. This is called normal diffusion. Parti-
cles on fractal networks diffuse more slowly compared
with the case of normal diffusion. This slow diffusion
called anomalous diffusion follows the relation given
by hr2(t)i � ta , where the condition 0 < a < 1 always
holds.

Brownian motion Einstein published the important pa-
per in 1905 opening the way to investigate the move-
ment of small particles suspended in a stationary liq-
uid, the so-called Brownian motion, which stimulated
J. Perrin in 1909 to pursue his experimental work con-
firming the atomic nature of matter. The trail of a ran-
dom walker provides an instructive example for un-
derstanding the meaning of random fractal structures.

Fractons Fractons, excitations on fractal elastic-net-
works, were named by S. Alexander and R. Orbach
in 1982. Fractons manifest not only static properties
of fractal structures but also their dynamic proper-
ties. These modes show unique characteristics such as
strongly localized nature with the localization length of
the order of wavelength.

Spectral density of states The spectral density of states of
ordinary elastic networks are expressed by the De-
bye spectral density of states given by D(!) � !d�1,
where d is the Euclidean dimensionality. The spec-
tral density of states of fractal networks is given by
D(!) � !ds�1, where ds is called the spectral or frac-
ton dimension of the system.

Spectral dimension This exponent characterizes the
spectral density of states for vibrational modes ex-
cited on fractal networks. The spectral dimension
constitutes the dynamic exponent of fractal networks
together with the conductivity exponent and the expo-
nent of anomalous diffusion.

Definition of the Subject

The idea of fractals is based on self-similarity, which is
a symmetry property of a system characterized by invari-
ance under an isotropic scale-transformation on certain
length scales. The term scale-invariance has the implica-
tion that objects look the same on different scales of obser-
vations. While the underlying concept of fractals is quite
simple, the concept is used for an extremely broad range
of topics, providing a simple description of highly com-
plex structures found in nature. The term fractal was first
introduced by Benoit B. Mandelbrot in 1975, who gave
a definition on fractals in a simple manner “A fractal is
a shape made of parts similar to the whole in some way”.
Thus far, the concept of fractals has been extensively used
to understand the behaviors of many complex systems or

has been applied from physics, chemistry, and biology for
applied sciences and technological purposes. Examples of
fractal structures in condensed matter physics are numer-
ous such as polymers, colloidal aggregations, porous me-
dia, rough surfaces, crystal growth, spin configurations of
diluted magnets, and others. The critical phenomena of
phase transitions are another example where self-similar-
ity plays a crucial role. Several books have been published
on fractals and reviews concerned with special topics on
fractals have appeared.

Length, area, and volume are special cases of ordi-
nary Euclidean measures. For example, length is the mea-
sure of a one-dimensional (1d) object, area the measure of
a two-dimensional (2d) object, and volume the measure of
a three-dimensional (3d) object. Let us employ a physical
quantity (observable) as the measure to define dimensions
for Euclidean systems, for example, a total mass M(r) of
a fractal object of the size r. For this, the following relation
should hold

r / M(r)1/d ; (1)

where d is the Euclidean dimensionality. Note that Eu-
clidean spaces are the simplest scale-invariant systems.
We extend this idea to introduce dimensions for self-
similar fractal structures. Consider a set of particles with
unit massm randomly distributed on a d-dimensional Eu-
clidean space called the embedding space of the system.
Draw a sphere of radius r and denote the total mass of par-
ticles included in the sphere byM(r). Provided that the fol-
lowing relation holds in the meaning of statistical average
such as

r / hM(r)i1/Df ; (2)

where h: : :i denotes the ensemble-average over different
spheres of radius r, we call Df the similarity dimension. It
is necessary, of course, that Df is smaller than the embed-
ding Euclidean dimension d. The definition of dimension
as a statistical quantity is quite useful to specify the charac-
teristic of a self-similar object if we could choose a suitable
measure.

There are many definitions to allocate dimensions.
Sometimes these take the same value as each other and
sometimes not. The capacity dimension is based on the
coverage procedure. As an example, the length of a curved
line L is given by the product of the number N of straight-
line segment of length r needed to step along the curve
from one end to the other such as L(r) D N(r)r. While,
the area S(r) or the volume V(r) of arbitrary objects can
be measured by covering it with squares or cubes of linear
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size r. The identical relation,

M(r) / N(r)rd (3)

should hold for the total massM(r) as measure, for exam-
ple. If this relation does not change as r! 0, we have the
relation N(r) / r�d . We can extend the idea to define the
dimensions of fractal structures such as

N(r) / r�Df ; (4)

from which the capacity dimension Df is given by

Df :D lim
r!0

lnN(r)
ln(1/r)

: (5)

The definition of Df can be rendered in the following im-
plicit form

lim
r!0

N(r)rDf D const : (6)

Equation (5) brings out a key property of the Hausdorff
dimension [10], where the product N(r)rDf remains finite
as r! 0. If Df is altered even by an infinitesimal amount,
this product will diverge either to zero or to infinity. The
Hausdorff dimension coincides with the capacity dimen-
sion for many fractal structures, although the Hausdorff
dimension is defined less than or equal to the capacity di-
mension. Hereafter, we refer to the capacity dimension or
the Hausdorff dimension mentioned above as the fractal
dimension.

Introduction

Fractal structures are classified into two categories; deter-
ministic fractals and random fractals. In condensed mat-
ter physics, we encounter many examples of random frac-
tals. The most important characteristic of random frac-
tals is the spatial and/or sample-to-sample fluctuations in

Fractal Structures in Condensed Matter Physics, Figure 1
Mandelbrot–Given fractal. a The initial structure with eight line segments, b the object obtained by replacing each line segment of
the initial structure by the initial structure itself (the second stage), and c the third stage of the Mandelbrot–Given fractal obtained
by replacing each line segment of the second-sage structure by the initial structure

their properties. We must discuss their characteristics by
averaging over a large ensemble. The nature of determin-
istic fractals can be easily understood from some exam-
ples. An instructive example is theMandelbrot–Given frac-
tal [12], which can be constructed by starting with a struc-
ture with eight line segments as shown in Fig. 1a (the
first stage of the Mandelbrot–Given fractal). In the sec-
ond stage, each line segment of the initial structure is re-
placed by the initial structure itself (Fig. 1b). This pro-
cess is repeated indefinitely. The Mandelbrot–Given frac-
tal possesses an obvious dilatational symmetry, as seen
from Fig. 1c, i. e., when we magnify a part of the structure,
the enlarged portion looks just like the original one. Let us
apply (5) to determine Df of the Mandelbrot–Given frac-
tal. The Mandelbrot–Given fractal is composed of 8 parts
of size 1/3, hence, N(1/3) D 8, N((1/3)2) D 82, and so on.
We thus have a relation of the form N(r) / r� ln3 8, which
gives the fractal dimension Df D ln3 8 D 1:89278 : : :. The
Mandelbrot–Given fractal has many analogous features
with percolation networks (see Sect. “Dynamical Proper-
ties of Fractal Structures”), a typical random fractal, such
that the fractal dimension of a 2d percolation network is
Df D 91/48 D 1:895833: : :, which is very close to that of
the Mandelbrot–Given fractal.

The geometric characteristics of random fractals can
be understood by considering two extreme cases of ran-
dom structures. Figure 2a represents the case in which
particles are randomly but homogeneously distributed in
a d-dimensional box of size L, where d represents ordinary
Euclidean dimensionality of the embedding space. If we
divide this box into smaller boxes of size l, the mass den-
sity of the ith box is

�i (l) D
Mi(l)
l d

; (7)
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Fractal Structures in Condensed Matter Physics, Figure 2
aHomogeneous random structure in which particles are randomly but homogeneously distributed, and b the distribution functions
of local densities �, where�(l) is the average mass density independent of l

where Mi(l) represents the total mass (measure) inside
box i. Since this quantity depends on the box i, we plot the
distribution function P(�), from which curves like those in
Fig. 2b may be obtained for two box sizes l1 and (l2 < l2).
We see that the central peak position of the distribution
function P(�) is the same for each case. This means that
the average mass density yields

�(l) D
hMi(l)ii

l d

becomes constant, indicating that hMi(l)ii / l d . The
above is equivalent to

� D
m
ad
; (8)

where a is the average distance (characteristic length-
scale) between particles and the mass of a single particle.
This indicates that there exists a single length scale a char-
acterizing the random system given in Fig. 2a.

Fractal Structures in Condensed Matter Physics, Figure 3
a Correlated random fractal structure inwhich particles are randomly distributed, but correlatedwith each other, and b the distribu-
tion functions of local densities�with finite values, where the averagemass densities depend on l

The other type of random structure is shown in Fig. 3a,
where particle positions are correlated with each other
and �i (l) greatly fluctuates from box to box, as shown in
Fig. 3b. The relation hMi(l)ii / l d may not hold at all for
this type of structure. Assuming the fractality for this sys-
tem, namely, if the power law hMi(l)ii / l Df holds, the av-
erage mass density becomes

�̄(l) D
hMi(l)ii

l d
/ l Df�d ; (9)

where �i(l) D 0 is excluded. In the case Df < d, �̄(l) de-
pends on l and decreases with increasing l. Thus, there is
no characteristic length scale for the type of random struc-
ture shown in Fig. 3a. If (9) holds with Df < d, so that
hMi(l)ii is proportional to l Df , the structure is said to be
fractal. It is important to note that there is no characteristic
length scale for the type of random fractal structure shown
in Fig. 3b. Thus, we can extend the idea of self-similarity
not only for deterministic self-similar structures, but also
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Fractal Structures in Condensed Matter Physics, Figure 4
a 2d site-percolation network and circles with different radii. b The power law relation holds between r and the number of particles
in the sphere of radius r, indicating the fractal dimension of the 2d network is Df D 1:89 : : : D 91/48

for random and disordered structures, the so-called ran-
dom fractals, in the meaning of statistical average.

The percolation network made by putting particles or
bonds on a lattice with the probability p is a typical exam-
ple of random fractals. The theory of percolation was ini-
tiated in 1957 by S.R. Broadbent and J.M. Hammersley [5]
in connection with the diffusion of gases through porous
media. Since their work, it has been widely accepted that
the percolation theory describes a large number of phys-
ical and chemical phenomena such as gelation processes,
transport in amorphous materials, hopping conduction in
doped semiconductors, the quantumHall effect, andmany
other applications. In addition, it forms the basis for stud-
ies of the flow of liquids or gases through porous media.
Percolating networks thus serve as a model which helps
us to understand physical properties of complex fractal
structures.

For both deterministic and random fractals, it is re-
markable that no characteristic length scale exists, and
this is a key feature of fractal structures. In other words,
fractals are defined to be objects invariant under isotropic
scale transformations, i. e., uniform dilatation of the sys-
tem in every spatial direction. In contrast, there exist sys-
tems which are invariant under anisotropic transforma-
tions. These are called self-affine fractals.

Determining Fractal Dimensions

There are severalmethods to determine fractal dimensions
Df of complex structures encountered in condensed mat-

ter physics. The following methods for obtaining the frac-
tal dimension Df are known to be quite efficient.

Coverage Method

The idea of coverage in the definition of the capacity di-
mension (see (5)) can be applied to obtain the fractal di-
mension Df of material surfaces. An example is the frac-
tality of rough surfaces or inner surfaces of porous media.
The fractal nature is probed by changing the sizes of ad-
sorbedmolecules on solid surfaces. Power laws are verified
by plotting the total number of adsorbed molecules versus
their size r. The area of a surface can be estimated with the
aid of molecules weakly adsorbed by van derWaals forces.
Gas molecules are adsorbed on empty sites until the sur-
face is uniformly covered with a layer one molecule thick.
Provided that the radius r of one adsorbed molecule and
the number of adsorbed molecules N(r) are known, the
surface area S obtained by molecules is given by

S(r) / N(r)r2 : (10)

If the surface of the adsorbate is perfectly smooth, we ex-
pect the measured area to be independent of the radius r
of the probe molecules, which indicates the power law

N(r) / r�2 : (11)

However, if the surface of the adsorbate is rough or con-
tains pores that are small compared with r, less of the sur-
face area S is accessible with increasing size r. For a fractal
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surface with fractal dimension Df, (11) gives the relation

N(r) / r�Df : (12)

Box-Counting Method

Consider as an example a set of particles distributed in
a space. First, we divide the space into small boxes of size r
and count the number of boxes containing more than one
particle, which we denote by N(r). From the definition of
the capacity dimension (4), the number of particle

N(r) / r�Df : (13)

For homogeneous objects distributed in a d-dimensional
space, the number of boxes of size r becomes, of course

N(r) / r�d :

Correlation Function

The fractal dimension Df can be obtained via the correla-
tion function, which is the fundamental statistical quantity
observed by means of X-ray, light, and neutron scattering
experiments. These techniques are available to bulk mate-
rials (not surface), and is widely used in condensed matter
physics. Let �(r) be the number density of atoms at posi-
tion r. The density-density correlation function G(r; r0) is
defined by

G(r; r0) D h�(r)�(r0)i ; (14)

where h: : :i denotes an ensemble average. This gives the
correlation of the number-density fluctuation. Provided
that the distribution is isotropic, the correlation function
becomes a function of only one variable, the radial dis-
tance r D jr � r0j, which is defined in spherical coordi-
nates. Because of the translational invariance of the system
on average, r0 can be fixed at the coordinate origin r0 D 0.
We can write the correlation function as

G(r) D h�(r)�(0)i : (15)

The quantity h�(r)�(0)i is proportional to the probability
that a particle exists at a distance r from another particle.
This probability is proportional to the particle density �(r)
within a sphere of radius r. Since �(r) / rDf�d for a fractal
distribution, the correlation function becomes

G(r) / rDf�d ; (16)

whereDf and d are the fractal and the embeddedEuclidean
dimensions, respectively. This relation is often used di-
rectly to determine Df for random fractal structures.

The scattering intensity in an actual experiment is pro-
portional to the structure factor S(q), which is the Fourier
transform of the correlation function G(r). The structure
factor is calculated from (16) as

S(q) D
1
V

Z

V
G(r)ei q�rdr / q�Df (17)

where V is the volume of the system. Here dr is the d-di-
mensional volume element. Using this relation, we can de-
termine the fractal dimension Df from the data obtained
by scattering experiments.

When applying these methods to obtain the fractal di-
mension Df, we need to take care over the following point.
Any fractal structures found in nature must have upper
and lower length-limits for their fractality. There usually
exists a crossover from homogeneous to fractal. Fractal
properties should be observed only between these limits.

We describe in the succeeding Sections several exam-
ples of fractal structures encountered in condensed matter
physics.

Polymer Chains in Solvents

Since the concept of fractal was coined by B.B. Mandelbrot
in 1975, scientists reinterpreted random complex struc-
tures found in condensed matter physics in terms of frac-
tals. They found that a lot of objects are classified as fractal
structures. We show at first from polymer physics an in-
structive example exhibiting the fractal structure. That is
an early work by P.J. Flory in 1949 on the relationship be-
tween the mean-square end-to-end distance of a polymer
chain hr2i and the degree of polymerization N. Consider
a dilute solution of separate coils in a solvent, where the
total length of a flexible polymer chain with a monomer
length a is Na. The simplest idealization views the poly-
mer chain in analogy with a Brownianmotion of a random
walker. The walk is made by a succession of N steps from
the origin r D 0 to the end point r. According to the cen-
tral limit theorem of the probability theory, the probability
to find a walker at r after N steps (N 	 1) follows the dif-
fusion equation and we have the expression for the proba-
bility to find a particle after N steps at r

PN (r) D (2�Na2/3)�3/2 exp(�3r2/2Na2) ; (18)

where the prefactor arises from the normalization of
PN (r). The mean squared distance calculated from PN (r)
becomes

hr2i D
Z

r2PN (r)d3r D Na2 : (19)

Then, the mean-average end-to-end distance of a poly-
mer chain yields R D hr2i1/2 D N1/2a. Since the number
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of polymerization N corresponds to the total mass M of
a polymer chain, the use of (19) leads to the relation
such as M(R) � R2. The massM(R) can be considered as
a measure of a polymer chain, the fractal dimension of this
ideal chain as well as the trace of Brown motion becomes
Df D 2 for any d-dimensional embedding space.

The entropy of the idealized chain of the length
L D Na is obtained from (18) as

S(r) D S(0) �
3r2

2R2 ; (20)

from which the free energy Fel D U � TS is obtained as

Fel(r) D Fel(0)C
3kBTr2

2R2 : (21)

Here U is assumed to be independent of distinct con-
figurations of polymer chains. This is an elastic energy
of an ideal chain due to entropy where Fel decreases as
N ! large. P.J. Flory added the repulsive energy term
due to monomer-monomer interactions, the so-called ex-
cluded volume effect. This has an analogy with self-avoiding
random walk. The contribution to the free energy is ob-
tained by the virial expansion into the power series on the
concentration cint D N/rd . According to the mean field
theory on the repulsive term Fint / c2int, we have the total
free-energy F such as

F
kBT

D
3r2

2Na2
C

v(T)N2

rd
; (22)

where v(T) is the excluded volume parameter. We can ob-
tain a minimum of F(r) at r D R by differentiating F(r)
with respect to r such that

M(R) / R
dC2
3 : (23)

Here the number of polymerization N corresponds to the
total mass M(R) of a polymer chain. Thus, we have the
fractal dimension Df D (d C 2)/3, in particular, Df D

5/3 D 1:666 : : : for a polymer chain in a solvent.

Aggregates and Flocs

The structures of a wide variety of flocculated colloids in
suspension (called aggregates or flocs) can be described in
terms of fractals. A colloidal suspension is a fluid contain-
ing small charged particles that are kept apart by Coulomb
repulsion and kept afloat by Brownian motion. A change
in the particle-particle interaction can be induced by vary-
ing the chemical composition of the solution and in this
manner an aggregation process can be initiated. Aggre-
gation processes are classified into two simple types: dif-
fusion-limited aggregation (DLA) and diffusion-limited

cluster-cluster aggregation (DLCA), where a DLA is due
to the cluster-particle coalescence and a DLCA to the clus-
ter-cluster flocculation. Inmost cases, actual aggregates in-
volve a complex interplay between a variety of flocculation
processes. The pioneering work was done by M.V. Smolu-
chowski in 1906, who formulated a kinetic theory for
the irreversible aggregation of particles into clusters and
further clusters combining with clusters. The inclusion
of cluster-cluster aggregation makes this process distinct
from the DLA process due to particle-cluster interaction.
There are two distinct limiting regimes of the irreversible
colloidal aggregation process: the diffusion-limited CCA
(DLCA) in dilute solutions and the reaction-limited CCA
(RLCA) in dense solutions. The DLCA is due to the fast
process determined by the time for the clusters to en-
counter each other by diffusion, and the RLCA is due to
the slow process since the cluster-cluster repulsion has to
dominate thermal activation.

Much of our understanding on the mechanism form-
ing aggregates or flocs has been mainly due to computer
simulations. The first simulation was carried out by Vold
in 1963 [23], who used the ballistic aggregation model
and found that the number of particles N(r) within a dis-
tance r measured from the first seed particle is given by
N(r) � r2:3. Though this relation surely exhibits the scal-
ing form of (2), the applicability of this model for real sys-
tems was doubted in later years. The researches on fractal
aggregates has been developed from a simulation model
on DLA introduced by T.A. Witten and L.M. Sander in
1981 [26] and on the DLCAmodel proposed by P. Meakin
in 1983 [14] andM. Kolb et al. in 1983 [11], independently.
The DLA has been used to describe diverse phenomena
forming fractal patterns such as electro-depositions, sur-
face corrosions and dielectric breakdowns. In the simplest
version of the DLA model for irreversible colloidal ag-
gregation, a particle is located at an initial site r D 0 as
a seed for cluster formation. Another particle starts a ran-
dom walk from a randomly chosen site in the spherical
shell of radius r with width dr(
 r) and center r D 0. As
a first step, a random walk is continued until the particle
contacts the seed. The cluster composed of two particles
is then formed. Note that the finite-size of particles is the
very reason of dendrite structures of DLA. This procedure
is repeatedmany times, in each of which the radius r of the
starting spherical shell should be much larger than the gy-
ration radius of the cluster. If the number of particles con-
tained in the DLA cluster is huge (typically 104 � 108), the
cluster generated by this process is highly branched, and
forms fractal structures in the meaning of statistical aver-
age. The fractality arises from the fact that the faster grow-
ing parts of the cluster shield the other parts, which there-
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Fractal Structures in Condensed Matter Physics, Figure 5
Simulated results of a 2d diffusion-limited aggregation (DLA).
The number of particles contained in this DLA cluster is 104

fore become less accessible to incoming particles. An arriv-
ing randomwalker is far more likely to attach to one of the
tips of the cluster. Thus, the essence of the fractal-pattern
formation arises surely from nonlinear process. Figure 5

Fractal Structures in Condensed Matter Physics, Figure 6
The fractal structures of zinc metal leaves grown by electrodeposition. Photographs a–dwere taken 3,5,9, and 15min after initiating
the electrolysis, respectively. After [13]

illustrates a simulated result for a 2d DLA cluster obtained
by the procedure mentioned above. The number of parti-
cles N inside a sphere of radius L (
 the gyration radius
of the cluster) follows the scaling law given by

N / LDf ; (24)

where the fractal dimension takes a value of Df � 1:71 for
the 2d DLA cluster and Df � 2:5 for the 3d DLA clus-
ter without an underlying lattice. Note that these fractal
dimensions are sensitive to the embedding lattice struc-
ture. The reason for this open structure is that a wander-
ingmolecule will settle preferentially near one of the tips of
the fractal, rather than inside a cluster. Thus, different sites
have different growth probabilities, which are high near
the tips and decreasewith increasing depth inside a cluster.

One of the most extensively studied DLA processes
is the growth of metallic forms by electrochemical depo-
sition. The scaling properties of electrodeposited metals
were pointed out by R.M. Brady and R.C. Ball in 1984 for
copper electrodepositions. The confirmation of the frac-
tality for zinc metal leaves was made by M. Matsushita et
al. in 1984. In their experiments [13], zinc metal leaves are
grown two-dimensionally by electrodeposition. The struc-
tures clearly recover the pattern obtained by computer
simulations for the DLA model proposed by T.A. Witten
and L.M. Sander in 1981. Figure 6 shows a typical zinc
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dendrite that was deposited on the cathode in one of these
experiments. The fractal dimensionality Df D 1:66˙ 0:33
was obtained by computing the density-density correla-
tion function G(r) for patterns grown at applied voltages
of less than 8V.

The fractality of uniformly sized gold-colloid aggre-
gates according to the DLCA was experimentally demon-
strated by D.A. Weitz in 1984 [25]. They used trans-
mission-electron micrographs to determine the fractal di-
mension of this systems to be Df D 1:75. They also per-
formed quasi-elastic light-scattering experiments to inves-
tigate the dynamic characteristics of DLCA of aqueous
gold colloids. They confirmed the scaling behaviors for the
dependence of the mean cluster size on both time and ini-
tial concentration.

These works were performed consciously to examine
the fractality of aggregates. There had been earlier works
exhibiting the mass-size scaling relationship for actual
aggregates. J.M. Beeckmans [2] pointed out in 1963 the
power law behaviors by analyzing the data for aerosol and
precipitated smokes in the literature (1922–1961). He used
in his paper the term “aggregates-within-aggregates”, im-
plying the fractality of aggregates. However, the data avail-
able at that stage were not adequate and scattered. There-
fore, this work did not provide decisive results on the frac-
tal dimensions of aggregates. There were smarter experi-
ments by N. Tambo and Y. Watanabe in 1967 [20], which
precisely determined fractal dimensions of flocs formed
in an aqueous solution. These were performed without
being aware of the concept of fractals. Original works
were published in Japanese. The English versions of these
works were published in 1979 [21].We discuss these works
below.

Flocs generated in aqueous solutions have been the
subject of numerous studies ranging from basic to applied
sciences. In particular, the settling process of flocs formed
in water incorporating kaolin colloids is relevant to wa-
ter and wastewater treatment. The papers by N. Tambo
and Y. Watanabe pioneered the discussion on the so-
called fractal approach to floc structures; they performed
their own settling experiments to clarifying the size depen-
dences of mass densities for clay-aluminum flocs by us-
ing Stokes’ law ur / 
�(r)r2 where 
� is the difference
between the densities of water and flocs taking so-small
values 
� � 0:01–0:001 g/cm3. Thus, the settling veloci-
ties ur are very slow of the order of 0:001m/sec for flocs of
sizes r � 0:1mm, which enabled them to perform precise
measurements. Since flocs are very fragile aggregates, they
made the settling experiments with special cautions on
convection and turbulence, and by careful and intensive
experiments of flocculation conditions. They confirmed

from thousands of pieces of data the scaling relationship
between settling velocities ur and sizes of aggregates such
as ur / rb . From the analysis of these data, they found
the scaling relation between effective mass densities and
sizes of flocs such as 
�(r) / r�c , where the exponents c
were found to take values from 1.25 to 1.00 depending on
the aluminum-ion concentration, showing that the frac-
tal dimensions become Df D 1:75 to 2.00 with increas-
ing aluminum-ion concentration. This is because the re-
pulsive force between charged clay-particles is screened,
and van der Waals attractive force dominates between the
pair of particles. It is remarkable that these fractal dimen-
sions Df show excellent agreement with those determined
for actual DLCA and RLCA clusters in the 1980s by us-
ing various experimental and computer simulation meth-
ods. Thus, they had found that the size dependences of
mass densities of flocs are controlled by the aluminum-
ion concentration dosed/suspended particle concentra-
tion, which they named the ALT ratio. These correspond

Fractal Structures in CondensedMatter Physics, Figure 7
Observed scaling relations between floc densities and their di-
ameters where aluminum chloride is used as coagulants. Af-
ter [21]
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to the transition from DLCA (established now taking the
value of Df � 1:78 from computer simulations) process to
the RLCA one (established at present from computer sim-
ulations as Df � 2:11). The ALT ratio has since the publi-
cation of the paper been used in practice as a criterion for
the coagulation to produce flocs with better settling prop-
erties and less sludge volume.We show their experimental
data in Fig. 7, which demonstrate clearly that flocs (aggre-
gates) are fractal.

Aerogels

Silica aerogels are extremely light materials with porosi-
ties as high as 98% and take fractal structures. The initial
step in the preparation is the hydrolysis of an alkoxysi-
lane Si(OR)4, where R is CH3 or C2H5. The hydrolysis
produces silicon hydroxide Si(OH)4 groups which poly-
condense into siloxane bonds –Si–O–Si–, and small par-
ticles start to grow in the solution. These particles bind
to each other by diffusion-limited cluster-cluster aggrega-
tion (DLCA) (see Sect. “Aggregates and Flocs”) until even-
tually they produce a disordered network filling the re-
action volume. After suitable aging, if the solvent is ex-
tracted above the critical point, the open porous structure
of the network is preserved and decimeter-size monolithic
blocks with a range of densities from 50 to 500 kg/m3 can
be obtained. As a consequence, aerogels exhibit unusual
physical properties, making them suitable for a number of
practical applications, such as Cerenkov radiation detec-
tors, supports for catalysis, or thermal insulators.

Silica aerogels possess two different length scales. One
is the radius r of primary particles. The other length is the
correlation length of the gel. At intermediate length scales,
lying between these two length scales, the clusters possess
a fractal structure and at larger length scales the gel is a ho-
mogeneous porous glass. Aerogels have a very low thermal
conductivity, solid-like elasticity, and very large internal
surfaces.

In elastic neutron scattering experiments, the scatter-
ing differential cross-section measures the Fourier compo-
nents of spatial fluctuations in the mass density. For aero-
gels, the differential cross-section is the product of three
factors, and is expressed by

d�
d˝
D Af 2(q)S(q)C(q) C B : (25)

Here A is a coefficient proportional to the particle con-
centration and f (q) is the primary-particle form factor.
The structure factor S(q) describes the correlation between
particles in a cluster and C(q) accounts for cluster-clus-
ter correlations. The incoherent background is expressed

by B. The structure factor S(q) is proportional to the spatial
Fourier transform of the density-density correlation func-
tion defined by (16), and is given by (17). Since the struc-
ture of the aerogel is fractal up to the correlation length
� of the system and homogeneous for larger scales, the
correlation function G(r) is expressed by (25) for r
 �

and G(r) D Const. for r 	 � . Corresponding to this, the
structure factor S(q) is given by (17) for q� 	 1, while
S(q) is independent of q for q� 
 1. The wavenumber
regime for which S(q) becomes a constant is called the
Guinier regime. The value of Df can be deduced from the
slope of the observed intensity versus momentum trans-
fer (q� 	 1) in a double logarithmic plot. For very large q,
there exists a regime called the Porod regime in which the
scattering intensity is proportional to q�4.

Fractal Structures in Condensed Matter Physics, Figure 8
Scattered intensities for eight neutrally reacted samples. Curves
are labeled with� in kg/m3. After [22]
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The results in Fig. 8 by R. Vacher et al. [22] are
from small-angle neutron scattering experiments on sil-
ica aerogels. The various curves are labeled by the macro-
scopic density � of the corresponding sample in Fig. 8.
For example, 95 refers to a neutrally reacted sample with
� D 95 kg/m3. Solid lines represent best fits. They are pre-
sented even in the particle regime q > 0:15Å-1 to em-
phasize that the fits do not apply in the region, particu-
larly for the denser samples. Remarkably, Df is indepen-
dent of sample density to within experimental accuracy:
Df D 2:40˙ 0:03 for samples 95 to 360. The departure
of S(q) from the q�Df dependence at large q indicates the
presence of particles with gyration radii of a few Å.

Dynamical Properties of Fractal Structures

The dynamics of fractal objects is deeply related to the
time-scale problems such as diffusion, vibration and trans-
port on fractal support. For the diffusion of a particle
on any d-dimensional ordinary Euclidean space, it is well
known that the mean-square displacement hr2(t)i is pro-
portional to the time such as hr2(t)i / t for any Euclidean
dimension d (see also (19)). This is called normal diffusion.
While, on fractal supports, a particle more slowly diffuses,
and the mean-square displacement follows the power law

hr2(t)i / t2/dw ; (26)

where dw is termed the exponent of anomalous diffusion.
The exponents is expressed as dw D 2C � with a pos-
itive � > 0 (see (31)), implying that the diffusion be-
comes slower compared with the case of normal diffusion.
This is because the inequality 2/dw < 1 always holds. This
slow diffusions on fractal supports are called anomalous
diffusion.

The scaling relation between the length-scale and
the time-scale can be easily extended to the problem of
atomic vibrations of elastic fractal-networks. This is be-
cause various types of equations governing dynamics can
be mapped onto the diffusion equation. This implies that
both equations are governed by the same eigenvalue prob-
lem, namely, the replacement of eigenvalues ! ! !2 be-
tween the diffusion equation and the equation of atomic
vibrations is justified. Thus, the basic properties of vibra-
tions of fractal networks, such as the density of states,
the dispersion relation and the localization/delocalization
property, can be derived from the same arguments for
diffusion on fractal networks. The dispersion relation be-
tween the frequency ! and the wavelength �(!) is ob-
tained from (26) by using the reciprocal relation t ! !�2

(here the diffusion problem is mapped onto the vibrational

one) and hr2(t)i ! �(!)�2. Thus we obtain the disper-
sion relation for vibrational excitations on fractal networks
such as

! / �(!)dw/2 : (27)

If dw D 2, we have the ordinary dispersion relation
! / �(!) for elastic waves excited on homogeneous
systems.

Consider the diffusion of a random walker on a perco-
lating fractal network. How does hr2(t)i behave in the case
of fractal percolating networks? For this, P.G. deGennes in
1976 [7] posed the problem called an ant in the labyrinth.
Y. Gefen et al. in 1983 [9] gave a fundamental description
of this problem in terms of a scaling argument. D. Ben-
Avraham and S. Havlin in 1982 [3] investigated this prob-
lem in terms of Monte Carlo simulations. The work by
Y. Gefen [9] triggered further developments in the dynam-
ics of fractal systems, where the spectral (or fracton) di-
mension ds is a key dimension for describing the dynamics
of fractal networks, in addition to the fractal dimensionDf.
The fractal dimension Df characterizes how the geometri-
cal distribution of a static structure depends on its length
scale, whereas the spectral dimension ds plays a central
role in characterizing dynamic quantities on fractal net-
works. These dynamical properties are described in a uni-
fied way by introducing a new dynamic exponent called
the spectral or fracton dimension defined by

ds D
2Df

dw
: (28)

The term fracton, coined by S. Alexander and R. Orbach
in 1982 [1], denotes vibrational modes peculiar to frac-
tal structures. The characteristics of fracton modes cover
a rich variety of physical implications. These modes are
strongly localized in space and their localization length is
of the order of their wavelengths.

We give below the explicit form of the exponent of
anomalous diffusion dw by illustrating percolation frac-
tal networks. The mean-square displacement hr2(t)i after
a sufficiently long time t should follow the anomalous dif-
fusion described by (26). For a finite network with a size
� , the mean-square distance at sufficiently large time be-
comes hr2(t)i � �2, so we have the diffusion coefficient for
anomalous diffusion from (26) such as

D / �2�dw : (29)

For percolating networks, the diffusion constant D in the
vicinity of the critical percolation density pc behaves

D / (p � pc)t�ˇ / ��(t�ˇ )/� ; (30)
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where t is called the conductivity exponent defined by
�dc � (p � pc)t , ˇ the exponent for the percolation order
parameter defined by S(p) / (p � pc)ˇ , and � the expo-
nent for the correlation length defined by � / jp � pcj�� ,
respectively. Comparing (29) and (30), we have the rela-
tion between exponents such as

dw D 2C
t � ˇ
�
D 2C � : (31)

Due to the condition t > ˇ, and hence � > 0, implying
that the diffusion becomes slow compared with the case of
normal diffusion. This slow diffusion is called anomalous
diffusion.

Spectral Density of States and Spectral Dimensions

The spectral density of states of atomic vibrations is the
most fundamental quantity describing the dynamic prop-
erties of homogeneous or fractal systems such as specific
heats, heat transport, scattering of waves and others. The
simplest derivation of the spectral density of states (abbre-
viated, SDOS) of a homogeneous elastic system is given
below. The density of states at ! is defined as the number
of modes per particle, which is expressed by

D(
!) D
1


!Ld
; (32)

where 
! is the frequency interval between adjacent
eigenfrequencies close to ! and L is the linear size of the
system. In the lowest frequency region, 
! is the low-
est eigenfrequency which depends on the size L. The re-
lation between the frequency 
! and L is obtained from
the well-known linear dispersion relationship ! D (k,
where ( is the velocity of phonons (quantized elastic
waves) such that


! D
2�(


/

1
L
: (33)

The substitution of (33) into (32) yields

D(
!) / 
!d�1 : (34)

Since this relation holds for any length scale L due to
the scale-invariance property of homogeneous systems, we
can replace the frequency 
! by an arbitrary !. There-
fore, we obtain the conventional Debye density of states as

D(!) / !d�1 : (35)

It should be noted that this derivation is based on the scale
invariance of the system, suggesting that we can derive the

SDOS for fractal networks in the same line with this treat-
ment. Consider the SDOS of a fractal structure of size L
with fractal dimension Df. The density of states per parti-
cle at the lowest frequency
! for this system is, as in the
case of (32), written as

D(
!) /
1

LDf 
!
: (36)

Assuming that the dispersion relation for
! correspond-
ing to (33) is


! / L�z ; (37)

we can eliminate L from (36) and obtain

D(
!) / 
!Df/z�1 : (38)

The exponent z of the dispersion relation (37) is evaluated
from the exponent of anomalous diffusion dw. Consider-
ing the mapping correspondence between diffusion and
atomic vibrations, we can replace hr2(t)i and t by L2 and
1/
!2, respectively. Equation (26) can then be read as

L / 
!�2/dw : (39)

The comparison of (28),(37) and (39) leads to

z D
dw
2
D

Df

ds
: (40)

Since the system has a scale-invariant fractal (self-similar)
structure
!, can be replaced by an arbitrary frequency !.
Hence, from (38) and (40) the SDOS for fractal networks
is found to be

D(!) / !ds�1 ; (41)

and the dispersion relation (39) becomes

! / L(!)�Df/ds : (42)

For percolating networks, the spectral dimension is ob-
tained from (40)

ds D
2Df

2C �
D

2(Df

2( C � � ˇ
: (43)

This exponent ds is called the fracton dimension after
S. Alexander and R. Orbach [1] or the spectral dimen-
sion after R. Rammal and G. Toulouse [17], hereafter we
use the term spectral dimension for ds. S. Alexander and
R. Orbach [1] estimated the values of ds for percolat-
ing networks on d-dimensional Euclidean lattices from
the known values of the exponents Df; (; � and ˇ. They
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pointed out that, while these exponents depend largely
on d, the spectral dimension (fracton) dimension ds does
not.

The spectral dimension ds can be obtained from the
value of the conductivity exponent t or vice versa. In the
case of percolating networks, the conductivity exponent t
is related to ds through (43), which means that the con-
ductivity �dc � (p � pc)t is also characterized by the spec-
tral dimension ds. In this sense, the spectral dimension ds
is an intrinsic exponent related to the dynamics of fractal
systems. We can determine the precise values of ds from
the numerical calculations of the spectral density of states
of percolation fractal networks.

The fracton SDOS for 2d, 3d, and 4d bond perco-
lation networks at the percolation threshold p D pc are
given in Fig. 9a and b, which were calculated by K. Yakubo
and T. Nakayama in 1989. These were obtained by large-
scale computer simulations [27]. At p D pc, the correla-
tion length diverges as � / jp � pcj�� and the network
has a fractal structure at any length scale. Therefore, frac-
ton SDOS should be recovered in the wide frequency range
!L 
 ! 
 !D, where !D is the Debye cutoff frequency
and !L is the lower cutoff determined by the system size.
The SDOSs and the integrated SDOSs per atom are shown
by the filled squares for a 2d bond percolation (abbrevi-
ated, BP) network at pc D 0:5. The lowest frequency !L
is quite small (! � 10�5 for the 2d systems) as seen from
the results in Fig. 9 because of the large sizes of the systems.

Fractal Structures in Condensed Matter Physics, Figure 9
a Spectral densities of states (SDOS) per atom for 2d, 3d, and4d BP networks at p D pc. The angular frequency! is definedwithmass
unitsmD 1 and force constant Kij D 1. The networks are formed on 1100� 1100 (2d), 100� 100� 100 (3d), and 30� 30� 30� 30
(4d) lattices with periodic boundary conditions, respectively. b Integrated densities of states for the same

The spectral dimension ds is obtained as ds D 1:33˙ 0:11
from Fig. 9a, whereas data in Fig. 9b give the more pre-
cise value ds D 1:325˙ 0:002. The SDOS and the inte-
grated SDOS for 3d BP networks at pc D 0:249 are given
in Fig. 9a and b by the filled triangles (middle). The spec-
tral dimension ds is obtained as ds D 1:31˙ 0:02 from
Fig. 9a and ds D 1:317˙ 0:003 from Fig. 9b. The SDOS
and the integrated SDOS of 4d BP networks at pc D 0:160.

A typical mode pattern of a fracton on a 2d percola-
tion network is shown in Fig. 10a, where the eigenmode
belongs to the angular frequency ! D 0:04997. To bring
out the details more clearly, Fig. 10b by K. Yakubo and
T. Nakayama [28] shows cross-sections of this fracton
mode along the line drawn in Fig. 10a. Filled and open
circles represent occupied and vacant sites in the perco-
lation network, respectively. We see that the fracton core
(the largest amplitude) possesses very clear boundaries for
the edges of the excitation, with an almost step-like char-
acter and a long tail in the direction of the weak segments.
It should be noted that displacements of atoms in dead
ends (weakly connected portions in the percolation net-
work) move in phase, and fall off sharply at their edges.

The spectral dimension can be obtained exactly for de-
terministic fractals. In the case of the d-dimensional Sier-
pinski gasket, the spectral dimension is given by [17]

ds D
2 log(d C 1)
log(d C 3)

:
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Fractal Structures in Condensed Matter Physics, Figure 10
a Typical fracton mode (! D 0:04997) on a 2d network. Bright region represents the large amplitude portion of the mode. b Cross-
section of the fracton mode shown in a along thewhite line. The four figures are snapshots at different times. After [28]

We see from this that the upper bound for a Sierpinski gas-
ket is ds D 2 as d !1. The spectral dimension for the
Mandelbrot–Given fractal depicted is also calculated ana-
lytically as

ds D
2 log 8
log 22

D 1:345 : : : :

This value is close to those for percolating networks men-
tioned above, in addition to the fact that the fractal dimen-
sion ds D log 8/ log 3 of the Mandelbrot–Given fractal is
close to Df D 91/48 for 2d percolating networks and that
the Mandelbrot–Given fractal has a structure with nodes,
links, and blobs as in the case of percolating networks.

For real systems, E. Courtens et al. in 1988 [6] observed
fracton excitations in aerogels by means of inelastic light
scattering.

Future Directions

The significance of fractal researches in sciences is that the
very idea of fractals opposes reductionism.Modern physics
has developed by making efforts to elucidate the physi-
cal mechanisms of smaller and smaller structures such as
molecules, atoms, and elementary particles. An example in

condensed matter physics is the band theory of electrons
in solids. Energy spectra of electrons can be obtained by
incorporating group theory based on the translational and
rotational symmetry of the systems. The use of this math-
ematical tool greatly simplifies the treatment of systems
composed of 1022 atoms. If the energy spectrum of a unit
cell molecule is solved, the whole energy spectrum of the
solid can be computed by applying the group theory. In
this context, the problem of an ordered solid is reduced
to that of a unit cell. Weakly disordered systems can be
handled by regarding impurities as a small perturbation to
the corresponding ordered systems. However, a different
approach is required for elucidating the physical proper-
ties of strongly disordered/complex systems with correla-
tions, or of medium-scale objects, for which it is difficult
to find an easily identifiable small parameter that would al-
low a perturbative analysis. For such systems, the concept
of fractals plays an important role in building pictures of
the realm of nature.

Our established knowledge on fractals is mainly due to
experimental observations or computer simulations. The
researches are at the phenomenological level stage, not at
the intrinsic level, except for a few examples. Concerning
future directions of the researches on fractals in condensed
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matter physics apart from such a question as “What kinds
of fractal structures are involved in condensed matter?”,
we should consider two directions: one is the very ba-
sic aspect such as the problem “Why are there numerous
examples showing fractal structures in nature/condensed
matter?” However, this type of question is hard. The ki-
netic growth-mechanisms of fractal systems have a rich
variety of applications from the basic to applied sciences
and attract much attention as one of the important sub-
jects in non-equilibrium statistical physics and nonlin-
ear physics. Network formation in society is one example
where the kinetic growth is relevant. However, many as-
pects related to the mechanisms of network formations re-
main puzzling because arguments are at the phenomeno-
logical stage. If we compare with researches on Brown-
ian motion as an example, the DLA researches need to
advance to the stage of Einstein’s intrinsic theory [8], or
that of Smoluchowski [18] and H. Nyquist [15]. It is no-
table that the DLA is a stochastic version of the Hele–Shaw
problem, the flow in composite fluids with high and low
viscosities: the particles diffuse in the DLA, while the fluid
pressure diffuses in Hele–Shaw flow [19]. These are deeply
related to each other and involve many open questions for
basic physics and mathematical physics.

Concerning the opposite direction, one of the impor-
tant issues in fractal research is to explore practical uses
of fractal structures. In fact, the characteristics of fractals
are applied to many cases such as the formation of tailor-
made nano-scale fractal structures, fractal-shaped anten-
nae with much reduced sizes compared with those of ordi-
nary antennae, and fractal molecules sensitive to frequen-
cies in the infrared region of light.

Deep insights into fractal physics in condensed matter
will open the door to new sciences and its application to
technologies in the near future.
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Glossary

Fractal Fractals are complex mathematical objects that
are invariant with respect to dilations (self-similarity)
and therefore do not possess a characteristic length
scale. Fractal objects display scale-invariance proper-
ties that can either fluctuate from point to point (mul-
tifractal) or be homogeneous (monofractal). Mathe-
matically, these properties should hold over all scales.
However, in the real world, there are necessarily lower
and upper bounds over which self-similarity applies.

Wavelet transform The continuous wavelet transform
(WT) is a mathematical technique introduced in the
early 1980s to perform time-frequency analysis. The
WT has been early recognized as a mathematical mi-
croscope that is well adapted to characterize the scale-
invariance properties of fractal objects and to reveal
the hierarchy that governs the spatial distribution of
the singularities of multifractal measures and func-
tions. More specifically, the WT is a space-scale analy-
sis which consists in expanding signals in terms of
wavelets that are constructed from a single function,
the analyzing wavelet, by means of translations and
dilations.




